Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

2003-06-23
2003-01-2282
Experimental tests were conducted on a Cummins B5.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NOx), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on total PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NOx, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMS).
Technical Paper

Emissions from a Cummins B5.9 Diesel Engine Fueled with Oxygenate-in-Diesel Blends

2001-08-20
2001-01-2505
Engine fuel tests were conducted with an oxygenated fuel called Cetaner blended with conventional diesel fuel to determine its emissions reduction potential. Blends of 10, 20, 30 and 40% by volume were investigated. The test engine was a 1993 Cummins B5.9 diesel rated at 175 hp. Emissions of particulate matter (PM), oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO), along with brake specific fuel consumption (bsfc) were measured during steady state operation at eight engine speed-load conditions. Soluble organic fraction (SOF) analysis was also carried out on the collected PM filter samples. The experimental results showed that the Cetaner blends can substantially reduce PM emissions. Reductions were observed in both the organic and inorganic fractions of the collected PM. On a modal-averaged basis, increasing Cetaner blend levels yielded greater PM reductions, with reductions of about 3-4% observed for each 1% of oxygen blended to the fuel by mass.
X