Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Performance Evaluation of the Commercial Plant Biotechnology Facility

1998-07-13
981666
The demand for highly flexible manipulation of plant growth generations, modification of specific plant processes, and genetically engineered crop varieties in a controlled environment has led to the development of a Commercial Plant Biotechnology Facility (CPBF). The CPBF is a quad-middeck locker playload to be mounted in the EXPRESS Rack that will be installed in the International Space Station (ISS). The CPBF integrates proven ASTROCULTURE” technologies, state-of-the-art control software, and fault tolerance and recovery technologies together to increase overall system efficiency, reliability, robustness, flexibility, and user friendliness. The CPBF provides a large plant growing volume for the support of commercial plant biotechnology studies and/or applications for long time plant research in a reduced gravity environment.
Technical Paper

A Matrix-Based Porous Tube Water and Nutrient Delivery System

1992-07-01
921390
A system was developed which provides nutrients and water to plants while maintaining good aeration at the roots and preventing water from escaping in reduced gravity. The nutrient solution is circulated through porous tubes under negative pressure and moves through the tube wall via capillary forces into the rooting matrix, establishing a non-saturated condition in the root zone. Tests using prototypes of the porous tube water and nutrient delivery system indicate that plant productivity in this system is equivalent to standard soil and solution culture growing procedures. The system has functioned successfully in short-term microgravity during parabolic flight tests and will be flown on the space shuttle. Plants are one of the components of a bioregenerative life support system required for long duration space missions.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

1994-06-01
941282
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
Technical Paper

Control and Monitoring of Environmental Parameters in the ASTROCULTURE™ Flight Experiment

1995-07-01
951627
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test and integrate subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Flights on the Space Shuttle have demonstrated control of water movement through a particulate rooting material, growth chamber temperature and humidity control, LED lighting systems and control, recycling of recovered condensate, ethylene scrubbing, and carbon dioxide control. A complete plant growth unit was tested on STS-63 in February 1995, the first ASC flight in which plant biology experiments were conducted in microgravity. The methods and objectives used for control of environmental conditions in the ASC unit are described in this paper.
Technical Paper

A Mars Mission Simulation to Determine the Efficacy of 0.38 G as a Countermeasure to Microgravity Induced Bone Demineralization

2000-07-10
2000-01-2245
Physiological effects of prolonged exposure to microgravity are a major concern when considering crew health and performance during an interplanetary mission. Among the most mission-critical of these deleterious effects are the changes to the skeletal system. Loss of bone mineral density (BMD) can be approximated for outbound and inbound transit portions of a human Mars mission. However, the effect of Martian gravity (0.38G) on the skeletal system is not well understood. This paper presents an experimental design to study bone demineralization of weight bearing bones during prolonged exposure to the skeletal unloading of microgravity and reduced gravity (0.38G) environments and its implications for a human Mars mission.
X