Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Low fuel consumption and low emissions~Electromechanical valve train in vehicle operation

2000-06-12
2000-05-0018
The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle.
Technical Paper

Development of a charge motion controlled combustion system for DI SI engines and its vehicle application to EU-4 emission regulations

2000-06-12
2000-05-0058
The development of new passenger car powertrains with gasoline direct- injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air-fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean-burn absorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall-guided concepts. Based on an initial single-cylinder development phase, a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine''s potential has been demonstrated in a mid-class vehicle.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Development of a Charge Motion Controlled Combustion System for DI SI-Engines and its Vehicle Application for EU-4 Emission Regulations

2000-03-06
2000-01-0257
The development of new passenger car powertrains with gasoline direct injection engines is facing new requirements which result from the need of different operational modes with stratified and homogeneous air fuel mixture. Moreover, the exhaust aftertreatment system causes a discontinuous operation with lean burn adsorption periods followed by short rich spikes for catalyst regeneration. Recent work on combustion system development has shown, that gasoline direct injection can create significant fuel economy benefits. Charge motion controlled combustion systems have proven to be of advantage in terms of low raw emissions compared to wall guided concepts. Based on an initial single-cylinder development phase a multi-cylinder engine was realized with excellent fuel economy, low raw emissions and operational robustness. Finally, the new engine's potential has been demonstrated in a mid-class vehicle.
Technical Paper

Benefits of the Electromechanical Valve Train in Vehicle Operation

2000-03-06
2000-01-1223
One of the most promising methods to reduce fuel consumption is to use unthrottled engine operation, where load control occurs by means of variable valve timing with an electromechanical valve train (EMV) system. This method allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement is made possible from the start of the first cycle. A load control strategy using a “Late Intake Valve Open” (LIO) provides a reduction in start-up HC emissions of approximately 60%.
X