Refine Your Search



Search Results

Technical Paper

Frictional Behavior of Automotive Interior Polymeric Material Pairs

As automotive manufacturers continue to increase their use of thermoplastics for interior components (due to cost, weight, …), the potential for frictionally incompatible materials contacting each other, resulting in squeaks and rattles, will also increase. This will go counter to the increased customer demand for quieter interiors. To address this situation, Ford's Advanced Vehicle Technology Squeak and Rattle Prevention Engineering Department and Virginia Tech have developed a tester that can measure friction as a function of relative sliding velocity during frictional instabilities such as stick slip. The Ford/VT team is developing a polymeric material pairing database that will be used as a guide for current and future designs to eliminate potential squeak concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, an analytical model will be developed as a tool to predict frictional behavior.
Technical Paper

Nondestructive Estimation of Degradation in Vehicle Joints Due to High Mileage

An experimental method for nondestructive estimation of damage in joints due to high mileage degradation in cars is presented. The method estimates damage by comparing transfer functions of the same car at zero and at high mileage. The potential of the method is demonstrated analytically using a three dimensional concept Finite Element Model (FEM) of a car body to simulate the transfer functions of this car body at zero and at high mileage. The results demonstrate that the method is effective for identifying the damaged joints as well as the relative degree of degradation.
Technical Paper

CALVIN: Winner of the Fourth Annual Unmanned Ground Vehicle Design Competition

The Unmanned Ground Vehicle Competition is jointly sponsored by the SAE, the Association for Unmanned Vehicle Systems (AUVS), and Oakland University. College teams, composed of both undergraduate and graduate students, build autonomous vehicles that compete by navigating a 139 meter outdoor obstacle course. The course, which includes a sand pit and a ramp, is defined by painted continuous or dashed boundary lines on grass and pavement. The obstacles are arbitrarily placed, multi-colored plastic-wrapped hay bales. The vehicles must be between 0.9 and 2.7 meters long and less than 1.5 meters wide. They must be either electric-motor or combustion-engine driven and must carry a 9 kilogram payload. All computational power, sensing and control equipment must be carried on board the vehicle. The technologies employed are applicable in Intelligent Transportation Systems (ITS).
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

Advanced Castings Made Possible Through Additive Manufacturing

Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
Technical Paper

Thermo-Mechanical Reliability of Nano-Silver Sintered Joints versus Lead-Free Solder Joints for Attaching Large-Area Silicon Devices

Nano-silver sintered bonding was carried out at 275°C and under 3MPa pressures, and soldering in a vacuum reflowing oven to reduce voiding. Both joints are subject to large shear stresses due to the mismatch in coefficients of thermal expansion (CTE) between the chip and the substrate. In this study, residual stresses in the chip-on-substrate assemblies were determined by measuring the bending curvatures of the bonded structures. An in-house optical setup measured the bending curvatures using a thin-film stress measurement technique. From the measured bending curvatures and the mechanical properties of the constituent materials, residual stresses were calculated. The thermo-mechanical reliabilities of both joining techniques were tested by thermal cycling. The chip assemblies were cycled between -40°C and 125°C (100 minutes of cycle time, 10 minutes of dwell time) and the changes in their bending curvatures were measured.
Technical Paper

Performance Characterization and Modeling of Shim Stack Assemblies in Vehicle Shock Absorbers

A detailed study of the effects of shim stack assemblies on performance of hydraulic mono-tube vehicle shock absorbers is presented. Currently, shim stacks are modeled as blow-off valves in hydraulic models of shock absorbers. Using this simplification, important material and geometrical properties of shim stacks cannot be studied and their effects cannot be understood on overall damper performance. In this paper, shim stack deflection is investigated and a mathematical model is presented for shim stack deflection. This model is then incorporated into the mathematical model of a hydraulic damper and various properties of shim stack and their effects on damper characteristics are studied. Energy and variational methods were used to develop the mathematical model of the shim stack. The mathematical model also takes into account the sliding effects of the shims on each other when the shim stack is deflected.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

Development of a Plug-In Hybrid Electric Vehicle Control Strategy Employing Software-In-the-Loop Techniques

In an age of growing complexity with regards to vehicle control systems, verification and validation of control algorithms is a rigorous and time consuming process. With the help of rapid control prototyping techniques, designers and developers have cost effective ways of validating controls under a quicker time frame. These techniques involve developments of plant models that replicate the systems that a control algorithm will interface with. These developments help to reduce costs associated with construction of prototypes. In standard design cycles, iterations were needed on prototypes in order to finalize systems. These iterations could result in code changes, new interfacing, and reconstruction, among other issues. The time and resources required to complete these were far beyond desired. With the help of simulated interfaces, many of these issues can be recognized prior to physical integration.
Technical Paper

Developing a Compact Continuous-State Markov Chain for Terrain Road Profiles

Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. It is beneficial to characterize the terrain as a stochastic process, allowing limitless amounts of synthetic terrain to be created from a small number of parameters. A continuous-state Markov chain is proposed as an alternative to the traditional discrete-state chain currently used in terrain modeling practice. For discrete-state chains, the profile transitions are quantized then characterized by a transition matrix (with many values). In contrast, the transition function of a continuous-state chain represents the probability density of transitioning between any two states in the continuum of terrain heights. The transition function developed in this work uses a location-scale distribution with polynomials modeling the parameters as functions of the current state.
Technical Paper

Utilization of Finite Element Analysis to Develop Automotive Components

The finite element method (FEM) is used daily in the automotive industry for such purposes as reducing the time of product development and improving the design based on analysis results, followed by later validation by tests in the laboratory and on the proving ground. This paper will present some of the methodology used to develop automotive components by finite element analysis, including procedures to specialize FEM models to obtain quantitative and qualitative results for systems such as body, chassis, and suspension components, as well as validation of the models by experimental data.
Technical Paper

Study on Squeeze Mode Magneto-Rheological Engine Mount with Robust H-Infinite Control

Magneto-rheological fluid squeeze mode investigations at CVeSS have shown that MR fluids show large force capabilities in squeeze mode. A novel MR squeeze mount was designed and built at CVeSS, and a dynamic mathematical model was developed, which considered the inertial effect and was validated by the test data. A variant engine mount that will be used for isolating vibration, based on the MR squeeze mode is proposed in the paper. The mathematical governing equations of the mount are derived to account for its operation with MR squeeze mode. The design method of a robust H✓ controller is addressed for the squeeze mount subject to parameter uncertainties in the damping and stiffness. The controller parameter can be derived from the solution of bilinear matrix inequalities (BMIs). The displacement transmissibility is constrained to be no more than 1.05 with this robust H✓ controller. The MR squeeze mount has a very large range of force used to isolate the vibration.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Hybrid Architecture Selection to Reduce Emissions and Petroleum Energy Consumption

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012 - 2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption, WTW greenhouse gas and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT will design, build, and refine an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle. In year 1 of the competition, HEVT has designed a powertrain to meet and exceed the goals of the competition.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.