Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

The Naturalistic Study of Distracted Driving: Moving from Research to Practice

2011-09-13
2011-01-2305
2011 - 56th L. Ray Buckendale Lecture Driver distraction has become an important topic in society and the research community. A telltale sign of how driver distraction has impacted society is evidenced by the designation of the term "distracted driving" as Webster's New World® College Dictionary 2009 Word of the Year. Since the release of a key study directed at commercial vehicle drivers, there have been two U.S. Department of Transportation summits to address the topic, in addition to legislation banning texting-while-driving in commercial motor vehicles. Given that "driver distraction" is a construct without a consensus definition, many studies on driver distraction have focused on its fundamental and theoretical underpinning, which is a critical first step in understanding the phenomenon.
Journal Article

Field Demonstration of Heavy Vehicle Camera/Video Imaging Systems

2011-09-13
2011-01-2245
To help drivers monitor the road and to reduce blind spots, Camera/Video Imaging Systems (C/VISs) display live video from cameras mounted on the truck's exterior to drivers using displays inside the truck cabin. This study investigated drivers' performance with C/VISs in a real-world trucking operation. Twelve commercial drivers' performance with and without a C/VIS was continuously recorded while they each drove for four months. Half of the drivers used a commercially available C/VIS that had a side-view camera on each fender. The other drivers used an advanced C/VIS (A-C/VIS) that had side-view cameras, a rear-view camera, and night-vision capabilities. This paper presents the study's final results and expands on the preliminary results that were previously reported. Detailed analyses of drivers' involvement in Safety-Critical Events (SCEs), their lane change performance, and their opinions of the C/VISs are presented.
Technical Paper

Development of a Performance Specification for Indirect Visibility Systems on Heavy Trucks

2007-10-30
2007-01-4231
Approximately 28,000 crashes involving combination unit trucks occur each year when they are making lane changes, merges, or turns. One contributing factor in these crashes is inadequate visibility for truck drivers. Recent advances in video technology have heightened the prospect of improving commercial vehicle safety by improving drivers' vision around the truck. For such video systems to be implemented on heavy trucks, the systems/driver interface should be demonstrated as viable through research. This paper presents the Camera/Video Imaging Systems (C/VISs) developed at Virginia Tech Transportation Institute (VTTI), the methodology used to test them, and some results obtained.
Technical Paper

Radio Usage: Observations from the 100-Car Naturalistic Driving Study

2007-04-16
2007-01-0441
This paper discusses radio usage habits observed during analysis of 700 hours of video sampled from the 100-Car Naturalistic Driving Study database. Analysts used large-scale printouts of each vehicle's radio faceplate and recorded interactions based on video analysis of hand movement and location (without the assistance of audio recordings). The duration and specific manipulations or adjustments were recorded for each interaction. The results summarize the length and type of interactions, most often-used controls, and total percentage of time drivers interacted with the radio.
Technical Paper

PERCLOS+:Moving Beyond Single-Metric Drowsiness Monitors

2008-10-07
2008-01-2692
Assessing driver drowsiness and providing timely alerts is the basis for drowsy driver monitoring systems. Though technologies are available that claim to reliably provide this function, they tend to be single-metric systems that may not be sufficiently robust for real-world operation. To address this issue, a prototype system that integrated two drowsiness measures was developed. The prototype combined machine-vision-based drowsy driver monitoring technology and the analysis of driver/vehicle performance parameters with the goal of more reliably assessing driver drowsiness. The prototype concept, called PERCLOS+, used PERCLOS (a slow eye-closure measure) in combination with lane deviation (to assess driver performance). Based on preliminary on-road tests, the prototype was found to be more robust than a single-metric system.
Technical Paper

The Relative Risks of Secondary Task Induced Driver Distraction

2008-10-20
2008-21-0001
Driver distraction, defined here as engaging in a secondary task or activity that is not central to the primary task of driving, has been shown to be a contributing factor for many crashes. The secondary tasks and other activities in which drivers choose to engage while driving is also known to be highly varied, including very complex activities(e.g., text messaging on a cellular device) to very simple activities (e.g., selecting a radio preset). Several important distinctions affect the relative risk of engaging in these tasks. Recent data from large-scale instrumented vehicle studies (i.e., “naturalistic” driving studies like the recently released “100 car study” (1)) have begun to provide data where the relative risk, in terms of crash and near crash involvement, can be directly assessed for differing secondary tasks. These data have provided some important insights into the features that create risk.
Technical Paper

Methodological Approach for a Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles

2009-10-06
2009-01-2930
Camera/Video Imaging Systems (C/VISs) display video captured from cameras mounted on the truck's fenders and trailer to drivers using displays mounted inside the truck cabin. C/VISs provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration. They also support drivers in determining the clearance between the trailer and an adjacent vehicle when performing a lane change. The National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Association (FMCSA) have collaboratively funded research on the development of C/VISs that operate during the day, as well as enhancing C/VISs to operate at night and in inclement weather. This paper presents the work performed in developing a C/VIS capable of being used in an eight-month technology field demonstration (TFD), which will allow the measurement of driver behavior with the C/VIS in a revenue-producing environment.
Technical Paper

Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles - Driver Lane Change Performance Preliminary Results

2010-10-05
2010-01-2020
On-board Camera/Video Imaging Systems (C/VISs) for heavy vehicles display live images to the driver of selected areas to the sides, and in back of the truck's exterior using displays inside the truck cabin. They provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration, and to better judge the clearance between the trailer and an adjacent vehicle when changing lanes. The Virginia Tech Transportation Institute is currently investigating commercial motor vehicle (CMV) driver performance with C/VISs through a technology field demonstration sponsored by the National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Administration (FMCSA). Data collection, which consists of recording twelve CMV drivers performing their daily employment duties with and without a C/VIS for four months, is currently underway.
Technical Paper

Discomfort Glare Ratings of Swiveling HID Headlamps

2004-05-10
2004-01-2257
Sixteen participants aged 55–65yrs provided deBoer scale ratings of discomfort glare for a vehicle with horizontally swiveling HID headlamps and a vehicle with the same headlamps that did not swivel in eight scenarios staged in a darkened parking lot. Participants, who were seated in the driver’s position of a stationary vehicle and instructed when to look, viewed the oncoming test vehicles in scenarios of 180m left turn, 180m right turn, 80m left turn, 80m right turn, left turn beside participant vehicle, crossing left in front of participant vehicle, right turn beside participant vehicle, and straightaway, in counterbalanced presentation orders. The swiveling headlamp vehicle provided statistically lower glare ratings in both 180m curves and the 80m right curve and statistically lower or similar in the intersection scenarios than the fixed headlamp vehicle.
Technical Paper

Target Detection Distances and Driver Performance with Swiveling HID Headlamps

2004-05-10
2004-01-2258
Twent-two participants of varying ages detected roadside targets in two consecutive dynamic evaluations of a horizontally swiveling headlamp vehicle and a vehicle with the same headlamps that did not swivel. Participants detected targets as they drove unlighted low-speed public roads. Scenarios encountered were intersection turns, and curves with approximate radii of 70-90m, 120-140m, 170-190m, and 215-220m. Results from the first study found improved detection distances from the swiveling headlamps in left curves, but unexpectedly decreased detection distances in larger radius right hand curves. The swiveling algorithm was altered for the second study, and the headlamps used did not have the same beam pattern as in the first study. Results from the second study again found improved detection distances from the swiveling headlamps while in the larger radius right hand curves fixed and swivel were not statistically different.
Technical Paper

A Unique Approach for Data Analysis of Naturalistic Driver Behavior

2001-08-20
2001-01-2518
This paper describes an effort to gather lane-changing and passing driver behavior data using naturalistic observation methods. Participants were ordinary commuters who drove instrumented vehicles to and from work while data were automatically collected. The three types of data included driver, vehicle response, and vehicle interaction data via collected video, vehicle sensor, and radar systems. These data were combined using a data integration system to understand lane-change and passing maneuvers. Developed specifically for this project, this system allows analysts to understand and characterize lane-changing and passing maneuvers by presenting the three types of data in an intuitive, integrated manner. The integrated data will facilitate understanding of driver behavior. This understanding will assist designers in the development of future crash reduction countermeasures including Crash Avoidance Systems (CAS).
Technical Paper

Comparing the Driving Safety Benefits of Brain Fitness Training Programs for Older Drivers

2016-04-05
2016-01-1441
This study presents a long-term examination of the effects of two types of perceptual-cognitive brain training programs on senior driver behavior and on-road driving performance. Seniors (70+) engaged in either a Toyota-designed in-vehicle training program based on implicit learning principles or a commercially available computer-based training program developed by Posit Science. Another group served as a no-contact control group; total enrollment was 55 participants. Participants completed a series of four experimental sessions: (1) baseline pre-training, (2) immediate post-training, (3) 6-9 months post-training, and (4) 12-16 months post-training. Experimental metrics taken at each session included measures of vehicle control and driver glance behavior on public roads.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Technical Paper

Methodological Overview of the Drowsy Driver Warning System Field Operational Test

2004-10-26
2004-01-2718
To address the issue of fatigued truck drivers, the U.S. Department of Transportation sponsored research to develop a Drowsy Driver Warning System. This system has been under development for several years and is at a point where it is ready for a Field Operational Test. The experimental plan calls for 102 drivers, each operating one of 34 instrumented heavy trucks for 16 weeks. Each vehicle is instrumented with video cameras and a variety of sensors to capture driver input/performance. This paper describes the method being used to conduct the study, including an overview of the data collection instrumentation.
Technical Paper

Quantifying the Pedestrian Detection Benefits of the General Motors Night Vision System

2005-04-11
2005-01-0443
This research compared driver detection performance with low-beam halogen headlamps supplemented by a General Motors production Night Vision system to low-beam halogen headlamps alone. This research was conducted with 18 participants between the ages of 40 and 70 years on a 3.2km (2-mile) section of closed road. Participants encountered seven scenarios, including crossing or standing pedestrians dressed in either white or black clothing. Additional scenarios included pedestrians in a curve and near an oncoming glare vehicle, as well a tire tread. Results indicated that the GM Night Vision system improved drivers' detection distances in nearly all pedestrian scenarios examined.
Technical Paper

Effectiveness of Workload-Based Drowsy Driving Countermeasures

2019-04-02
2019-01-1228
This study evaluated the effectiveness of alternative workload-based interventions intended to restore driver alertness following drowsy episodes. Unlike traditional drowsy driving studies, this experiment did not target sleep-deprived individuals, but rather studied normally rested drivers under the assumption that low-workload environments could trigger drowsy driving episodes. The study served as a proof of concept for varying the nature and onset of countermeasure interventions intended to disrupt the drowsiness cycle. Interventions to combat drowsiness attempted to target driver workload, either physical or cognitive, and included two primary treatment conditions: 1) physical workload to increase driver steering demands and 2) trivia-based interactive games to mentally challenge drivers. A benchmark comparison condition using music was also investigated to contrast the relative influence of workload-based interventions with passive listening to musical arrangements.
Journal Article

Field Study of Heavy Vehicle Crash Avoidance System Performance

2016-09-27
2016-01-8011
This study evaluated the performance of heavy vehicle crash avoidance systems (CASs) by collecting naturalistic driving data from 150 truck tractors equipped with Meritor WABCO OnGuardTM or Bendix® Wingman® AdvancedTM products. These CASs provide drivers with audio-visual alerts of potential conflicts, and can apply automatic braking to mitigate or prevent a potential collision. Each truck tractor participated for up to one year between 2013 and 2015. Videos of the forward roadway and drivers’ faces were collected along with vehicle network data while drivers performed their normal duties on revenue-producing routes. The study evaluated the performance of CAS activations by classifying them into three categories based on whether a valid object was being tracked and whether drivers needed to react immediately.
Technical Paper

Does the Interaction between Vehicle Headlamps and Roadway Lighting Affect Visibility? A Study of Pedestrian and Object Contrast

2020-04-14
2020-01-0569
Vehicle headlamps and roadway lighting are the major sources of illumination at night. These sources affect contrast - defined as the luminance difference of an object from its background - which drives visibility at night. However, the combined effect of vehicle headlamps and intersection lighting on object contrast has not been reported previously. In this study, the interactive effects of vehicle headlamps and overhead lighting on object contrast were explored based on earlier work that examined drivers’ visibility under three intersection lighting designs (illuminated approach, illuminated box, and illuminated approach + box). The goals of this study were to: 1) quantify object luminance and contrast as a function of a vehicle’s headlamps and its distance to an intersection using the three lighting designs; and, 2) to assess whether contrast influences visual performance and perceived visibility in a highly dynamic intersection environment.
X