Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Efficient Alternative for Computing Algorithm Detection Thresholds

2006-04-03
2006-01-0009
Commonly, a significant event is detected when a normally stable engine parameter (ex. sensor voltage, sensor current, air flow, pedal position, fuel level, tire pressure, engine acceleration, etc.) transiently exceeds a calibrated detection threshold. Many implementations of detection thresholds rely on multi-input lookup tables or functions and are complex and difficult to calibrate. An approach is presented to minimize threshold calibration effort and complexity, while improving detection performance, by dynamically computing thresholds on-line based on current real-time data. Determining engine synchronization without a camshaft position sensor is presented as an illustrative application.
Technical Paper

Engine Position Tracking at Shutdown

2005-04-11
2005-01-0048
Engine position synchronous control of fuel injection and spark ignition at engine start can reduce regulated emissions, and improve start quality. Synchronous fuel and ignition control requires full 720° engine position information. Emissions and start quality benefits are gained if engine position is available at key-on before initial engine rotation. Typical engine position sensor sets require substantial engine rotation before engine position is initialized. Tracking engine stop position, for use on the next start, eliminates the initial engine angular travel required for synchronization. The previous stop position of the engine is stored in non-volatile memory, giving engine position immediately at start. This approach is applicable for systems in which the engine controller remains powered for some time after key-off. As the engine stops, direction reversals are common.
X