Refine Your Search

Topic

Author

Search Results

Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

Towards Development of Thermal Standards for the Design of LED Lamps

2007-04-16
2007-01-1037
Even though the use of LED's in automotive industry is continuously increasing, the test standards used for the thermal design of the lamps do not address the unique needs of LED based lamps. The challenge becomes more significant because LED's are semiconductor devices with lower maximum operating temperatures and photometric properties that depend on temperature. This paper presents sunload test results and lamp thermal data measured on vehicles undergoing simulated driving conditions in a lab environment. The data clearly indicates substantial differences in the measured data versus the test conditions to which the lamps are designed today. It is recommended to modify test standards that the lamps must meet to more closely emulate the field conditions.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Optimal Design of Roller One Way Clutch for Starter Drives

2004-03-08
2004-01-1151
The starter drive clutch is a one way roller clutch and a key component in a starter motor that is used to crank internal combustion engines. The starter drive clutch transmits torque from an electrical motor to a ring gear mounted on a cranking shaft in an engine thus cranks the engine. The clutch also prevents the whole starter from damage caused by extremely high load and/or extremely high speed applied to the starter pinion from the engine. Drive slippage and barrel cracking are two major failure modes for the starter drive[1]. Insufficient torque capacity results in drive slippage while excessive high hoop stress on the clutch barrel ring causes barrel crack. To eliminate drive slippage failure, the clutch should be designed with high torque capacity. High torque capacity, however, is a cause of high hoop stress on the barrel that may result in the cracked barrel failure. Higher torque capacity and lower hoop stress are two completely opposite design directions.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Journal Article

Ensuring Audio Signal Quality in Automotive Infotainment Systems

2013-04-08
2013-01-0163
In automotive infotainment systems, multiple types of digital audio signals are usually present. Some come from internal sources, such as a CD or USB stick, and some come from external sources, such as an internet stream or digital radio. These sources usually have different sample-rates, and may also be different from one or more system sample-rates. Managing and transporting these signals throughout the system over different sample-rate domains require detailed upfront architecture analysis and correct system design to ensure signal quality is maintained to the desired level. Incorrect design can add significant user-perceivable noise and distortion. This paper examines the key analysis factors, the effects of poor design and the approaches for achieving robust signal handling and ensuring desired signal quality.
Journal Article

Assessment of Automatic Volume Leveling for Automotive Sound Systems

2013-04-08
2013-01-0162
This paper presents an assessment of competing algorithms for normalizing volume levels between tracks and/or sources in an automotive infotainment system. Portable media players such as smartphones and iPod® devices are extremely popular for listening to music collections or streaming content from the Internet. The lack of normalization is a source of dissatisfaction if the user experiences significant changes in audio level between tracks. Several commercially available algorithms exist to solve this problem. This research includes a double-blind listening test comparing an audio sample processed with the different leveling algorithms to an unprocessed reference. The listener preference rating is recorded and results indicate which algorithm is preferred.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Journal Article

Connected Car Architecture and Virtualization

2016-04-05
2016-01-0081
Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
Technical Paper

An Approach for the Optical Design of an LED Fog Lamp

2004-03-08
2004-01-0226
Traditionally fog lamps use halogen filament light sources. With the emergence of high brightness white LEDs, it is now possible to develop automotive forward lighting systems with LED light sources. Six LEDs are shown to be sufficient for the implementation of a European fog lamp using a faceted reflector optical approach. Each reflector together with the LED light source forms a modular element. The optical parameters of two different lamp designs are compared and correlation between the simulation and prototype measurements is shown. Further, additional forward lighting functions can be implemented through the use of additional elements.
Technical Paper

Accelerated Life Cycle Development for Electronic Throttle Control Software using Model-Based/Auto-Code Technology

2004-03-08
2004-01-0276
The purpose of this paper is to demonstrate our success in taking advantage of model-based development tools and auto-code technology to accelerate the typical life cycle development of powertrain software. In particular, we applied the technology as a clean sheet approach to Visteon's third generation Electronic Throttle Control system. In the process of applying model-based development and 100% auto-code, we identified various pitfalls and created solutions to overcome the gap between technology and development process during each phase of the entire software development life cycle. We will share our lessons learned during the requirement, design, implementation, and validation stages.
Technical Paper

Control Software Interface for Managing System Requirements

2004-03-08
2004-01-0363
Not all software tools are created equal and not all software tools are created to perform the same tasks. Therefore, different software tools are used to perform different tasks. However, being able to share the information between the different software tools, without having to manually re-enter (duplicate) any of the information, can save a lot of time and improve the quality of the product. The control software interface presented in this paper, allows system engineers to exchange data between software tools in an efficient manner which maximizes each tools capabilities and ultimately reduces development time and improves the quality of the product.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

2005-05-16
2005-01-2310
Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
X