Refine Your Search

Topic

Search Results

Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

Optimization and Robust Design of Heat Sinks for Automotive Electronics Applications

2004-03-08
2004-01-0685
The increasing power requirement for automotive electronics (radios, etc.), combined with ever-shrinking size and weight allowances, is creating a greater need for optimization and robust design of heat sinks. Not only does a heat sink directly affect the overall performance and reliability of a specific electronics application, but a well-designed, optimized heat sink can have other benefits - such as eliminating the requirement for special fans, reducing weight of the application, eliminating additional heat sink support structures, etc. Optimizing heat sink efficiency and thermal performance offers a challenge, due to the many competing design requirements. These requirements include effecting greater temperature reductions, accommodating vehicle packaging requirements and size limitations, generating a uniform heat distribution, etc., and all the while reducing the heat sink cost.
Technical Paper

Inaudible Knock and Partial-Burn Detection Using In-Cylinder Ionization Signal

2003-10-27
2003-01-3149
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. Maximizing engine power and fuel economy is limited by engine knock for a given air-to-fuel charge. Therefore, the ability to detect engine knock and run the engine at its knock limit is a key for the best power and fuel economy. This paper shows inaudible knock detection ability using in-cylinder ionization signals over the entire engine speed and load map. This is especially important at high engine speed and high EGR rates. The knock detection ability is compared between three sensors: production knock (accelerometer) sensor, in-cylinder pressure and ionization sensors. The test data shows that the ionization signals can be used to detect inaudible engine knock while the conventional knock sensor cannot under some engine operational conditions.
Technical Paper

Overview of Automotive Plastic Parts Molds Development of in Brazil

2003-11-18
2003-01-3565
In Brazil the market for plastic parts molds, in last few years had become very competitive, with several Vehicle Operations and a big number of a different models, and with today total market volume it means low volumes productions for each model. This market demands for good toolshops and at the same time a big pressure to reduce investments, one of the most important. Plastic components usage in the car, is increasing overtime, with new applications for Exterior, interior and powertrain, requiring new technologies for Injection molding processing and making molds to be more complex. The development of plastic parts in Brazil has its own characteristics, strengths and weaknesses. In fact a big and heterogeneous market. This paper intends to present an analysis of development of plastic parts in Brazil, considering the development of mold tooling locally, focusing the automotive market.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

2003-10-27
2003-01-3266
MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

Water Condensate Retention and “Wet” Fin Performance in Automotive Evaporators

2001-03-05
2001-01-1252
Water condensate retained inside an automotive evaporator has remained as one of the primary sources of unpleasant “odors”, which in turn can drive up the warranty cost for automotive manufacturers. The “wet” evaporator fin can also underperform due to the presence of condensate blocking the air passage. Moreover, condensate retention can be a potential factor of freezing up evaporators. Thus, an evaporator fin must be designed such that it can shed and drain water condensate as well as provide an excellent heat transfer capability. While the importance of water retention is well known, there seems lacking of a comprehensive way to evaluate the water retention characteristics of a particular product. In this work, attempts were made to answer four questions: (1) What is the mechanism that controls water condensate retention characteristics in an automotive evaporator? (2) Can different water retention evaluation methods reveal the same characteristics?
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Fully Recyclable Olefinic Instrument Panels

2002-03-04
2002-01-0310
Recycled resins can meet performance requirements on products which were initially designed for virgin materials. Olefinic instrument panel (I/P) scrap is being recycled from the Mazda Tribute and the Ford Escape into glove box bins. As a result, a quality part is being supplied to the customer and Visteon's Saline Plant has realized both increased plant operating efficiencies and landfill cost avoidance. The development process is described including: plant regrind sources, part molding and testing.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

Design and Development of Light Weight Al Spindle

2002-03-04
2002-01-0676
The demand for improved vehicle fuel economy drives the auto engineers to look for opportunities in weight reduction of automotive systems and components. This paper presents inventions on the design and development of a lightweight spindle. In this new product, the spindle body is made from an Al alloy for a substantial weight reduction in comparison to the tradition iron spindle body. The shaft of the spindle is made from high strength steel to meet strength requirements. The design shows the unique feature of the joining area between the spindle body and shaft. The related joining process is applied to produce a strong joint between the two parts made of different materials. The testing results will be presented and discussed.
Technical Paper

DSS, The Driver Stability System of Visteon

2002-03-04
2002-01-0782
This paper introduces the Driver Stability System (DSS) at Visteon. DSS is a new active comfort / safety system for automobiles which controls the seat bolsters independently in real time to enhance the lateral support of the occupants. Under turning maneuvers, DSS reacts to the vehicle dynamics to provide an increased contact area between the occupants and their seats, allowing optimal occupant location with respect to such variables as steering wheel angle, lateral acceleration, yaw rate, and vehicle velocity. The lateral force compensation is directly coupled to the dynamic movement of vehicle chassis and the change of road profile. The system consists of the seat bolster assembly including DC motors, wheel speed sensors, steering wheel sensor, lateral accelerometer, yaw rate sensor, and electronic control unit (ECU). This paper also discusses the control concept of DSS and its realistic controller structure.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

Vibration Assessment of a Slip-in-Tube Propshaft Through Correlated Analytical Model

2003-05-05
2003-01-1481
Analytical methods are used extensively in the automotive industry to validate the feasibility of component and assembly designs and their dynamic behavior. Correlation of analytical models with test data is an important step in this process. This paper discusses the Finite Element model of an innovative Slip-in-Tube Propshaft design. The Slip-in-Tube joint (slip joint) poses challenges for its dynamic simulation. This paper discusses the methods of simulating the joint and correlating it to experimental results. Also, the Noise and Vibration (NVH) characteristics of the Slip-in-Tube Propshaft design. In this paper, a Finite Element model of the proposed propshaft is developed using shell and beam element formulations. Each model is verified to optimize the feasibility of using accurate and computationally efficient elements for the dynamic analysis.
Technical Paper

Acoustic Modeling and Radiated Noise Prediction for Plastic Air-Intake Manifolds

2003-05-05
2003-01-1448
Reliable prediction of the radiated noise due to the air pressure pulsation inside air-intake manifolds (AIM) is of significant interest in the automotive industry. A practical methodology to model plastic AIMs and a prediction process to compute the radiated noise are presented in this paper. The measured pressure at the engine inlet valve of an AIM is applied as excitation on an acoustic boundary element model of the AIM in order to perform a frequency response analysis. The measured air pressure pulsation is obtained in the crank-angle domain. This pressure is read into MATLAB and transformed into the frequency domain using the fast Fourier transform. The normal modes of the structure are computed in ABAQUS and a coupled analysis in SYSNOISE is launched to couple the boundary element model and the finite element model of the structure. The computed surface vibration constitutes the excitation for an acoustic uncoupled boundary element analysis.
X