Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Co-Simulation of Electrical and Propulsion Systems

One of the challenges of analyzing vehicular electrical systems is the co-dependence of the electrical system and the propulsion system. Even in traditional vehicles where the electrical power budget is very low, the electrical system analysis for macro power utilization over a drive cycle requires knowledge of the generator shaft rpm profile during the drive cycle. This co-dependence increases as the electrical power budget increases, and the integration of the two systems becomes complete when hybridization is chosen. Last year at this conference, the authors presented a paper entitled “Dual Voltage Electrical System Simulations.” That paper established validation for a suite of electrical component models and demonstrated the ability to predict system performance both on a macro power flow (entire drive cycle) level and a detailed transient-event level. The techniques were applicable to 12V, 42V, dual voltage, and/or elevated voltage systems.
Technical Paper

Full Vehicle Simulation for Series Hybrid Vehicles

Delphi and the National Renewable Energy Laboratory (NREL) collaborated to develop a simulation code to model the mechanical and electrical architectures of a series hybrid vehicle simultaneously. This co-simulation code is part of the larger ADVISOR® product created by NREL and diverse partners. Simulation of the macro power flow in a series hybrid vehicle requires both the mechanical drivetrain and the entire electrical architecture. It is desirable to solve the electrical network equations in an environment designed to comprehend such a network and solve the equations in terms of current and voltage. The electrical architecture for the series hybrid vehicle has been modeled in Saber™ to achieve these goals. This electrical architecture includes not only the high-voltage battery, generator, and traction motor, but also the normal low-voltage bus (14V) with loads common to all vehicles.
Technical Paper

HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions

Hybrid electric vehicles (HEV's) offer additional flexibility to enhance the fuel economy and emissions of vehicles. The Real-Time Control Strategy (RTCS) presented here optimizes efficiency and emissions of a parallel configuration HEV. In order to determine the ideal operating point of the vehicle's engine and motor, the control strategy considers all possible engine-motor torque pairs. For a given operating point, the strategy predicts the possible energy consumption and the emissions emitted by the vehicle. The strategy calculates the “replacement energy” that would restore the battery's state of charge (SOC) to its initial level. This replacement energy accounts for inefficiencies in the energy storage system conversion process. User- and standards-based weightings of time-averaged fuel economy and emissions performance determine an overall impact function. The strategy continuously selects the operating point that is the minimum of this cost function.