Refine Your Search

Topic

Author

Search Results

Technical Paper

Power Steering Pump with Enhanced Cold Start Priming

2001-04-30
2001-01-1422
The objective of the present work was to improve the cold start NVH performance of an automotive power steering pump under low temperature conditions. This objective was accomplished through the use experimental study and measurement. The satisfactory operation of a fixed displacement vane pump in cold temperatures depends on a number of factors including; (1) filling characteristics, (2) the inlet conditions to the pump, (3) the fluid, and (4) the ability of the vanes to maintain contact with the cam surface. In this investigation, factor (4) was chosen for investigation. A unique outlet orifice was designed and tested at three different operating ambient temperatures, -19 °C, -29 °C, and -40 °C. Maximum “noise” duration was measured as the maximum duration of fluid borne pump outlet pressure oscillations greater the 345 kPa peak-to-peak. The results show that noise duration can reduced by as much as 50% at -40 °C.
Technical Paper

R134A Suction Line Heat Exchanger in Different Configurations of Automotive Air-Conditioning Systems

2001-05-14
2001-01-1694
A suction line heat exchanger (SLHX) transfers heat from the condenser outlet to the suction gas. In a TXV (thermostatic expansion valve) system, the performance improvement with a 60 to 80 % effective SLHX is expected to be on the order of 8 to 10 % for capacity, and 5 to 7 % for COP for high outdoor air temperatures of 43ºC. In a FOT (fixed orifice tube) system, the performance improvement was calculated to be about 10 to 15 %. The calculated improvements have been verified experimentally within a few percent.
Technical Paper

Automotive HVAC Flow Noise Prediction Models

2001-04-30
2001-01-1498
Flow noise from automotive HVAC (Heating, Ventilating and Air Conditioning) systems is one of the major considerations of occupant comfort. The noise generated at high blower speed is a major contributor to the vehicle interior noise. This paper reviews automotive HVAC air rush noise prediction models for estimating register, buck (air handling subsystem) and vehicle noise levels. The vehicle noise prediction method correlates well with measured noise levels at driver right ear location: with a standard deviation of 1.31 dB where standard deviation is the difference between measured and predicted noise levels for a sample size of 10 vehicles.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
Technical Paper

Water Condensate Retention and “Wet” Fin Performance in Automotive Evaporators

2001-03-05
2001-01-1252
Water condensate retained inside an automotive evaporator has remained as one of the primary sources of unpleasant “odors”, which in turn can drive up the warranty cost for automotive manufacturers. The “wet” evaporator fin can also underperform due to the presence of condensate blocking the air passage. Moreover, condensate retention can be a potential factor of freezing up evaporators. Thus, an evaporator fin must be designed such that it can shed and drain water condensate as well as provide an excellent heat transfer capability. While the importance of water retention is well known, there seems lacking of a comprehensive way to evaluate the water retention characteristics of a particular product. In this work, attempts were made to answer four questions: (1) What is the mechanism that controls water condensate retention characteristics in an automotive evaporator? (2) Can different water retention evaluation methods reveal the same characteristics?
Technical Paper

Stability Control of Combination Vehicle

2001-03-05
2001-01-0138
This paper discusses the development of combination vehicle stability program (CVSP) at Visteon. It will describe why stability control is needed for combination vehicles and how the vehicle stability can be improved. We propose and evaluate controller structures and design methods for CVSP. These include driver's intent identification, combination vehicle status estimation and control, and fault detection / tolerance. In this paper, the braking and steering dynamics of car-trailer and tractor-semitrailer combinations, and the brake systems which should be used extensively to increase the stability of combination vehicles are presented. Also our development platform is introduced and the combination vehicle simulation results are presented. The definition of combination vehicles in this paper includes car-trailer and commercial tractor-semitrailer combinations since their vehicle dynamics are based on the same equations of motion.
Technical Paper

Optimizing the Effects of Body Attachment Stiffness on Steering Column In-Vehicle Modes

2001-03-05
2001-01-0041
This paper presents an unambiguous and intuitive method for identification of steering column resonant (SCR) mode of vibration. One simple but overlooked technique to determine the SCR mode in-vehicle is to provide local stiffnesses of the body locations where the Instrument Panel (IP) attaches, to the IP suppliers to be used in their design and development. This paper describes how this technique is useful in predicting the first few important in-vehicle steering column modes for different classes of vehicles, with examples presented in each class. The results obtained from such analyses are compared against those from direct in-buck simulations. This technique is not limited to its application in developing IP systems, but can easily be extended to include other systems such as seats, fuel tanks, etc. Also it is shown that a design optimization analysis may be performed using these attachment stiffnesses as design variables resulting in a system level solution.
Technical Paper

Portable NVH Dynamometers

2003-05-05
2003-01-1682
Noise Vibration and Harshness (NVH) characteristics have become a key differentiator between “Good” vehicles and “Best-In-Class” vehicles. While all OEM's and most Tier 1 suppliers have on-site in-ground chassis dynamometers, a need was identified to design, develop and bring to market, a fully capable portable NVH full vehicle chassis system. The original concept entailed a device, which could be brought to the customer's location, be fully self contained, requiring no external power, and provide data acquisition using transducers that would not contact the vehicle. With traditional instrumentation taking several hours to install, non-contacting lasers would be used to provide significant timesaving, and prevent any possible damage to the vehicle from pinched wires. The new methodology should provide data acquisition in as little as 20 minutes. Analysis would be accomplished immediately following testing, with hard copies available before the next vehicle was ready to run.
Technical Paper

Reinforcement Challenges and Solutions in Optimized Design of Injection Molded Plastic Parts

2003-03-03
2003-01-1123
The mechanical performance of injection molded glass-fiber reinforced plastic parts is highly anisotropic and depends strongly on the kinetics (orientation and distribution) of the glass-fiber and the part geometry. Similarly, the bulk and local mechanical performance at the ribs, walls and welds is influenced by these glass-fibers and the specific processing technology (including joining) used, as related to melt-flow and melt-pool formation and glass-fiber re-orientation. The purpose of this study is to show: the effect of short glass-fiber orientation at the pre-welded beads, ribs and wall areas for injection molded and subsequently welded parts the short-term mechanical performance of welded butt-joints that have various geometry and thickness, namely “straight” and “T-type” welds.
Technical Paper

EVOP Design of Experiments

2003-03-03
2003-01-1015
Evolutionary Operation (EVOP) experimental design using Sequential Simplex method is an effective and robust means for determining the ideal process parameter (factor) settings to achieve optimum output (response) results. EVOP is the methodology of using on-line experimental design. Small perturbations to the process are made within allowable control plan limits, to minimize any product quality issues while obtaining information for improvement on the process. It is often the case in high volume production where issues exist, however off-line experimentation is not an option due to production time, the threat of quality issues and costs. EVOP leverages production time to arrive at the optimum solution while continuing to process saleable product, thus substantially reducing the cost of the analysis.
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
Technical Paper

Human Factors Flight Test Evaluation of an Airport Surface Display with Indications & Alerts (SURF IA)

2010-09-30
2010-01-1663
This paper presents the results of a human factors flight test evaluation of a display of Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA). The study is an element of the FAA-sponsored Surface Conflict Detection and Alerting with Consideration of Arrival Applications program. The objective of the flight test was to conduct a comparative evaluation of two candidate SURF IA displays: a detailed Airport Surface Situation Awareness (ASSA) display and a runways-only Final Approach Runway Occupancy Awareness (FAROA) display. Six pilots with a current Air Transport Pilot Certificate each completed 18 scenarios. A Beechcraft King Air C-90 and a Cessna Citation Sovereign aircraft were deployed for the flight tests. The scenarios were conducted at Seattle-Tacoma International Airport and at Snohomish County Paine Field Airport, with each aircraft acting as ‘traffic’ for the other aircraft.
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
Technical Paper

International Product User Research: Concurrent Studies Comparing Touch Screen Feedback in Europe and North America

2009-04-20
2009-01-0779
This paper describes two studies; each conducted concurrently in North America and Europe to assess subjective impressions and simulated driving task performance using a touch screen interface with different types of auditory and haptic feedback. The first study investigated subjective impressions of four types of touch screen feedback in a static laboratory setting. The second study investigated the influence of the same four touch screen feedback types on simulated driving task performance using the lane change test (LCT). Results of the first study revealed significant similarities and differences in subjective impressions between respondents in each of the two regions studied. Results of the second study revealed differences in task performance that suggest distinct participant strategies in each of the two regions studied.
Technical Paper

Production Solutions for Utilization of Both R1234yf and R134a in a Single Global Platform

2009-04-20
2009-01-0172
As global automobile manufacturers prepare for the phase-out of R134a in Europe, they must address the issue of using the new refrigerant for European sales only or launching the product worldwide. Several factors play into this decision, including cost, service, risk, customer satisfaction, capacity, efficiency, etc. This research effort addresses the minimal vehicle-level hardware differences necessary to provide a European solution of R1234yf while continuing to install R134a into vehicles for the rest of the world. It is anticipated that the same compressor, lubricant and condenser; most fluid transport lines; and in most cases the evaporator can be common between the two systems.
Technical Paper

Lean Principles in Supply Chain Management for the Automotive Aftermarket

2009-04-20
2009-01-0263
The automotive aftermarket represents a challenge for supply chain management when compared to traditional practices in the original equipment manufacturer (OEM) supply chain. This paper presents a case study for a Tier One automotive supplier’s challenges with inventory carrying costs, backorder risk, and supplier relationships for a rear seat entertainment system in the automotive aftermarket. It will also address the lean principles used to improve the business and increase material planning analyst productivity. A call for OEMs to examine their business practices is also included.
Technical Paper

Improving Load Regeneration Capability of an Aircraft

2009-11-10
2009-01-3189
This paper presents new concepts for improving management of the electrical load power regeneration of an aircraft. A novel electrical system that allows for load regeneration back to the distribution bus is described. This approach offers the benefits of reduced weight, volume, and cost, as well as improved reliability. Also described is an electrical machine control mechanism that creates motor power to run the prime mover (i.e., the main engine to dissipate the regenerated power). Instead of main engine generation, this approach can be applied to an auxiliary power unit (APU) or power and thermal management system (PTMS). Background information regarding the regeneration concept is presented. The concept definition and the various modes of operation of the improved system are analyzed and described in detail. Results from the dynamic simulation of the system model are included.
Technical Paper

Numerical Simulation of a Direct-Injection Spark-Ignition Engine with Different Fuels

2009-04-20
2009-01-0325
This paper focuses on the numerical investigation of the mixing and combustion of ethanol and gasoline in a single-cylinder 3-valve direct-injection spark-ignition engine. The numerical simulations are conducted with the KIVA code with global reaction models. However, an ignition delay model mitigates some of the deficiencies of the global one-step reaction model and is implemented via a two-dimensional look-up table, which was created using available detailed kinetics models. Simulations demonstrate the problems faced by ethanol operated engines and indicate that some of the strategies used for emission control and downsizing of gasoline engines can be employed for enhancing the combustion efficiency of ethanol operated engines.
Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
X