Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Statistical Identification and Analysis of Vehicle Noise Transfer Paths

Identification of vibration transfer paths is critical to proper isolation of vibration excitations from becoming objectionable noise in a vehicle. Traditional transfer path methods involve comparing vibration inputs to the outputs of each joint. This method can be time consuming and inefficient due to a complexity of paths. A new statistical method was developed to improve the efficiency of testing. This method requires the measurement of the excitation vibration input at each joint of the source component and response sound measurements in the vehicle. Identification of transfer paths using regression analysis will determine the trouble paths to scrutinize.