Refine Your Search

Topic

Search Results

Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Human Factors Flight Test Evaluation of an Airport Surface Display with Indications & Alerts (SURF IA)

2010-09-30
2010-01-1663
This paper presents the results of a human factors flight test evaluation of a display of Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA). The study is an element of the FAA-sponsored Surface Conflict Detection and Alerting with Consideration of Arrival Applications program. The objective of the flight test was to conduct a comparative evaluation of two candidate SURF IA displays: a detailed Airport Surface Situation Awareness (ASSA) display and a runways-only Final Approach Runway Occupancy Awareness (FAROA) display. Six pilots with a current Air Transport Pilot Certificate each completed 18 scenarios. A Beechcraft King Air C-90 and a Cessna Citation Sovereign aircraft were deployed for the flight tests. The scenarios were conducted at Seattle-Tacoma International Airport and at Snohomish County Paine Field Airport, with each aircraft acting as ‘traffic’ for the other aircraft.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

Environmental Systems Considerations for Aircraft Cabins During Ground Operation

2002-11-05
2002-01-2941
The quality of outside air during ground operations was analyzed by comparing airport and engine exhaust data to exposure limits and odor thresholds. The results indicated that the outside air may contain compounds in high enough concentrations to be odorous. If the odor is to be treated, the important design criteria that must be considered include the phase of compounds, compound type, location of treatment device on the aircraft, pressure drop, operating temperature, and maintenance interval. Finally, a control strategy is outlined that monitors the air quality as well as the efficiency of an air treatment system.
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

Novel High Performance Fiber-High Speed Test Development

2002-03-04
2002-01-0681
The major objective of this paper is to address how the actual force versus extension relationship for a seat belt during a collision is different from the one obtained at typical low rate (static) conditions. We also look at what features of the tensile stress-strain characteristic are important for the optimal performance of a seat belt. To answer these questions experimentally we use our high rate Instron -1331. We also designed an experimental set up that required special grips and contact sensors for characterizing samples of belt and yarn. In the theoretical part we demonstrate the selected rates for the tensile testing as relevant to the collisions. We also discuss the importance of the energy absorbing capacity of the belts as the most relevant characteristic of the tensile curves for this application. We then show the effect of visco-elastic factors on energy absorbing properties of fibers during collisions and the role of weaving and dyeing the belt.
Technical Paper

Molded-in-Color PP Instrument Panel with Seamless Passenger Airbag

2002-03-04
2002-01-0311
Traditionally, the passenger airbag door for an instrument panel (I/P) is a separate component assembled to the substrate, where the panel has an opening for the airbag module. The airbag door (usually made of TPE material) arrives to the assembly line from the airbag module supplier to be installed to the I/P. The grain and gloss between the door cover and the I/P class “A” surface must match closely. This paper describes the implementation of the passenger airbag door as an integral part of the instrument panel. This approach provides superior craftsmanship to the vehicle interior system. The I/P area that contains the seamless passenger airbag is weakened from the B-surface.
Technical Paper

Power Distribution for Spacecraft Payloads that Employ State of the Art Radiation Hardened Integrated Circuits

2006-11-07
2006-01-3058
Recent advances in the state of the art of space-borne data processors and signal processors have occurred that present some unprecedented constraints relating to their power needs. Such processors include the class of multiprocessors providing computational capabilities in the billions of floating point operations per second. Processors of this type tend to require use of modern radiation tolerant or radiation hardened integrated circuits requiring very low voltage power supplies that place considerable challenge on power distribution and conversion within those processing payloads. The primary challenges are efficient conversion of power from the spacecraft power bus to these low voltages and distribution of the very high accompanying currents within the payload while maintaining proper voltage regulation (typically +/− 5%). Some integrated circuits require 10 Amps or more at 1Volt, as an example [3], [6].
Technical Paper

Design Parameter Tradeoffs for LED Headlamp Applications

2007-04-16
2007-01-0871
High-power LEDs and LED headlamps have become a serious consideration for the automotive industry. White LEDs have achieved the required performance for initial automotive headlamp applications. However tradeoffs among several attributes such as efficiency, cost, weight and performance profoundly affect LED headlamp development and need to be addressed by vehicle manufacturers, lamp set makers and LED source suppliers in order for LED headlamps to be effective. The solutions to these tradeoffs relates to the behavior of the LED sources, the thermo-mechanical integration of LEDs in a headlamp environment and input from the vehicle manufacturer regarding styling and packaging for an LED headlamp on the respective targeted vehicles.
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
Technical Paper

Honeywell's Automotive Door Latch Design is Ideal for Corporate Latch Strategy

2003-03-03
2003-01-1190
In response to consumer demand, automakers are adding more safety, security, and convenience features to vehicle access control systems. Also, in a continuing effort to be more profitable, automakers are reducing costs by outsourcing the design of systems/sub-systems/components, reducing their supply base, and minimizing part numbers by sharing components across several platforms. In an attempt to improve efficiency and productivity, many OEM's have adopted a “corporate latch” strategy, implementing the same latch across several manufacturing platforms and marketing divisions. Honeywell's revolutionary door latch design efficiently and cost effectively addresses vehicle OEMs' current and future requirements for performance and functionality.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

Mechanisms of Passenger Kinetic Energy Absorption During Collision and Role of SECURUS™ Fiber

2003-03-03
2003-01-1226
A new revolutionary fiber (SECURUS™) that is offered by Honeywell to the automotive industry suitable for use in safety belts is able to absorb a passenger's kinetic energy without the passenger being subjected to excessive forces. This paper analyses thoroughly the mechanisms of the energy dissipation during an automotive accident. Such analysis shows the role of the belt and its characteristics in the process of energy dissipation. We have shown that there are two interacting mechanisms: one by the vehicle (energy absorbing elements) and another by the belt itself. We built simple and useful mathematical models of the process and showed quantitatively (using the belts of real characteristics and dimensions) how the remarkable characteristics of SECURUS™ fiber allow the force reduction. In this paper the models are simple enough to keep the major effects transparent to the observer.
Technical Paper

Interior Fittings – A Global View

2003-03-03
2003-01-1175
In today's global economy, the automotive design engineer's responsibilities are made more complex by the differences between regulatory requirements of the various global markets. This paper compares instrument panel head impact requirements of FMVSS 201 with its European counterparts, ECE 21, and EEC/74/60, Interior Fittings. It describes the similarities and differences between these regulations and explains the unique requirements for each market. It then compares processes for development and validation testing in both markets. It also covers related topics like self-certification, witness testing, radii, projections, and interior compartment doors. The cockpit design engineer will gain an understanding of the factors involved in ensuring that their design fully meets the requirements of the subject regulations.
Technical Paper

Improving Load Regeneration Capability of an Aircraft

2009-11-10
2009-01-3189
This paper presents new concepts for improving management of the electrical load power regeneration of an aircraft. A novel electrical system that allows for load regeneration back to the distribution bus is described. This approach offers the benefits of reduced weight, volume, and cost, as well as improved reliability. Also described is an electrical machine control mechanism that creates motor power to run the prime mover (i.e., the main engine to dissipate the regenerated power). Instead of main engine generation, this approach can be applied to an auxiliary power unit (APU) or power and thermal management system (PTMS). Background information regarding the regeneration concept is presented. The concept definition and the various modes of operation of the improved system are analyzed and described in detail. Results from the dynamic simulation of the system model are included.
Technical Paper

Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays — SAE ARP 4260

2009-11-10
2009-01-3143
SAE ARP 4260 Photometric and Colorimetric Measurement Procedures for Airborne Electronic Flat Panel Displays [1] has recently been revised. This new revision reaffirms that ARP 4260 is pertinent to the aviation industry, changes the content to keep up with the state of the art, and adds clarification where needed. ARP 4260 contains methods used to measure the optical performance of airborne electronic flat panel display systems and is referenced in SAE ARP 4256, Design Objectives for Liquid Crystal Displays for Part 25 (Transport) Aircraft [2] and in SAE AS 8034, Minimum Performance Standard for Airborne Multipurpose Electronic Displays [3].
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
X