Refine Your Search


Search Results

Viewing 1 to 13 of 13

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
Technical Paper

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

This research project compares the in-use and laboratory-derived fuel economy of a medium-duty hybrid electric drivetrain with “engine off at idle” capability to a conventional drivetrain in a typical commercial package delivery application. Vehicles in this study included eleven model year 2010 Freightliner P100H hybrids that were placed in service at a United Parcel Service (UPS) facility in Minneapolis, Minn., during the first half of 2010. These hybrid vehicles were evaluated for 18 months against eleven model year 2010 Freightliner P100D diesels that were placed in service at the same facility a couple months after the hybrids. Both vehicle study groups use the same model year 2009 Cummins ISB 200 HP engine. The vehicles of interest were chosen by comparing the average daily mileage of the hybrid group to that of a similar size and usage diesel group.
Technical Paper

Development of 80- and 100- Mile Work Day Cycles Representative of Commercial Pickup and Delivery Operation

When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true “work day” cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from more than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation.
Technical Paper

Leveraging Big Data Analysis Techniques for U.S. Vocational Vehicle Drive Cycle Characterization, Segmentation, and Development

Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real-world drive cycle data collected at 1 Hz and stored in NREL’s Fleet DNA database. The Fleet DNA database contains millions of miles of historical drive cycle data captured from medium- and heavy-duty vehicles operating across the United States. The data encompass existing DOE activities as well as contributions from valued industry stakeholder participants.
Technical Paper

Exploring Telematics Big Data for Truck Platooning Opportunities

NREL completed a temporal and geospatial analysis of telematics data to estimate the fraction of platoonable miles traveled by class 8 tractor trailers currently in operation. This paper discusses the value and limitations of very large but low time-resolution data sets, and the fuel consumption reduction opportunities from large scale adoption of platooning technology for class 8 highway vehicles in the US based on telematics data. The telematics data set consist of about 57,000 unique vehicles traveling over 210 million miles combined during a two-week period. 75% of the total fuel consumption result from vehicles operating in top gear, suggesting heavy highway utilization. The data is at a one-hour resolution, resulting in a significant fraction of data be uncategorizable, yet significant value can still be extracted from the remaining data. Multiple analysis methods to estimate platoonable miles are discussed.
Technical Paper

Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real-World Drive Cycles

Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation in the design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large-scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high-fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large, real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models.
Journal Article

A Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations.
Technical Paper

GPS Data Filtration Method for Drive Cycle Analysis Applications

Global Positioning System (GPS) data acquisition devices have proven useful tools for gathering real-world driving data and statistics. The data collected by these devices provide valuable information in studying driving habits and conditions. When used jointly with vehicle simulation software, the data are invaluable in analyzing vehicle fuel use and performance, aiding in the design of more advanced and efficient vehicle technologies. However, when employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the captured raw data samples. Common sources of error in GPS data include sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which combine to limit the quality of field data for use in downstream applications.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Technical Paper

FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy's Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery life. The input data for most light-duty vehicles can be automatically imported. Those inputs can be modified to represent variations of the vehicle or powertrain. The vehicle and its components are then simulated through speed-versus-time drive cycles. At each time step, FASTSim accounts for drag, acceleration, ascent, rolling resistance, each powertrain component's efficiency and power limits, and regenerative braking. Conventional vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, compressed natural gas vehicles, and fuel cell vehicles are included.
Technical Paper

Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method.
Technical Paper

The Evaluation of the Impact of New Technologies for Different Powertrain Medium-Duty Trucks on Fuel Consumption

In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four powertrains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.