Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

2003-10-27
2003-01-3266
MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

Finite Element Model Correlation of an Automotive Propshaft with Internal and External Dampers

2004-03-08
2004-01-0862
In the absence of prototypes, analytical methods such as finite element analysis are very useful in resolving noise and vibration problems, by predicting dynamic behavior of the automotive components and systems. Finite Element Analysis (FEA) is a simulation technique and involves making assumptions that affect analytical results. Acceptance and use of these results is greatly enhanced through test validation. In this paper, dynamic behavior of the automotive propshaft equipped with cardboard liner and torsional damper is investigated. The finite element model is validated at both component and subsystem levels using frequency response functions. Effects of the cardboard liner and torsional damper on the propshaft bending, torsional and breathing frequencies are studied under free-free boundary conditions. Effects of the U-Joint stiffness along with other design variables on the driveshaft dynamic behavior are also studied.
Technical Paper

Stability Control of Combination Vehicle

2001-03-05
2001-01-0138
This paper discusses the development of combination vehicle stability program (CVSP) at Visteon. It will describe why stability control is needed for combination vehicles and how the vehicle stability can be improved. We propose and evaluate controller structures and design methods for CVSP. These include driver's intent identification, combination vehicle status estimation and control, and fault detection / tolerance. In this paper, the braking and steering dynamics of car-trailer and tractor-semitrailer combinations, and the brake systems which should be used extensively to increase the stability of combination vehicles are presented. Also our development platform is introduced and the combination vehicle simulation results are presented. The definition of combination vehicles in this paper includes car-trailer and commercial tractor-semitrailer combinations since their vehicle dynamics are based on the same equations of motion.
Technical Paper

Power Steering Pump with Enhanced Cold Start Priming

2001-04-30
2001-01-1422
The objective of the present work was to improve the cold start NVH performance of an automotive power steering pump under low temperature conditions. This objective was accomplished through the use experimental study and measurement. The satisfactory operation of a fixed displacement vane pump in cold temperatures depends on a number of factors including; (1) filling characteristics, (2) the inlet conditions to the pump, (3) the fluid, and (4) the ability of the vanes to maintain contact with the cam surface. In this investigation, factor (4) was chosen for investigation. A unique outlet orifice was designed and tested at three different operating ambient temperatures, -19 °C, -29 °C, and -40 °C. Maximum “noise” duration was measured as the maximum duration of fluid borne pump outlet pressure oscillations greater the 345 kPa peak-to-peak. The results show that noise duration can reduced by as much as 50% at -40 °C.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Predictive Control Algorithm for an Anti-Lock Braking System

2002-03-04
2002-01-0302
Generalized predictive control (GPC) is a discrete time control strategy proposed by Clark et al [1]. The controller tries to predict the future output of a system or plant and then takes control action at present time based on future output error. Such a predictive control algorithm is presented in this paper for deceleration slip regulation in an automobile. Most of the existing literature on the anti-lock brake control systems lacks the effectiveness of the wheel lockup prevention when the automobile is in a skid condition (in a low friction coefficient surface with panic braking situation). Simulation results show that the predictive feature of the proposed controller provides an effective way to prevent wheel lock-up in a braking event.
Technical Paper

Power Steering Pump Sound Quality and Vibration - Test Stand Development

2003-05-05
2003-01-1662
The quietness of the interior of automobiles is perceived by consumers as a measure of quality and luxury. Great strides have been achieved in isolating interiors from noise sources. As noise is reduced, in particular wind and power train noise, other noise sources become evident. Noise reduction efforts are now focused on components like power steering pumps. To understand the contribution of power steering pumps a world-class noise and vibration test stand was developed. This paper describes the development of the test stand as well as it's objective to understand and improve the sound quality of power steering pumps.
Technical Paper

Multibody Dynamic Simulation of Steering Gear Systems With Three-Dimensional Surface Contacts

2006-02-14
2006-01-1960
In an effort to understand steering systems performance and properties at the microscopic level, we developed Multibody simulations that include multiple three-dimensional gear surfaces that are in a dynamic state of contact and separation. These validated simulations capture the dynamics of high-speed impact of gears traveling small distances of 50 microns in less than 10 milliseconds. We exploited newly developed analytic, numeric, and computer tools to gain insight into steering gear forces, specifically, the mechanism behind the inception of mechanical knock in steering gear. The results provided a three dimensional geometric view of the sequence of events, in terms of gear surfaces in motion, their sudden contact, and subsequent force generation that lead to steering gear mechanical knock. First we briefly present results that show the sequence of events that lead to knock.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

Driver Steering Performance Using Joystick vs. Steering Wheel Controls

2003-03-03
2003-01-0118
A fixed-base driving simulator with a 14-degree of freedom vehicle dynamics model was used to compare the lane tracking performance of test subjects using a joystick steering controller to that using a conventional steering wheel. Three driving situations were studied: a) straight-line highway driving, b) winding road driving (country road), and c) evasive maneuvering - a double lane change event. In addition, three different joystick force-feedback settings were evaluated: i) linear force feedback, ii) non-linear, speed sensitive force feedback and iii) no force feedback. A conventional steering wheel with typical passenger car force feedback tuning was used for all of the driving events for comparison.
Technical Paper

Prediction of Vehicle Steering System NVH from Component-Level Test Data

2006-04-03
2006-01-0483
This work demonstrates a practical method for predicting vehicle-level automotive steering system NVH performance from component-level NVH measurements of hydraulic steering pumps. For this method, in-vehicle measurements were completed to quantify vehicle noise path characteristics, including steering system structure borne, fluid borne and airborne paths. At the component level, measurements of steering pump reaction forces, sound power and dynamic hydraulic pressure were also completed. The vehicle-level measurement data was used to construct NVH transfer functions for the vehicle. These transfer functions were in turn combined with the pump component data measured on a test stand to create a prediction for steering pump order vehicle interior noise. The accuracy of these predicted values was assessed through comparison with actual vehicle interior noise measurements.
Technical Paper

Reducing Bolt-up Distortion of a Conventional Brake Rotor by Optimization

2005-04-11
2005-01-0793
Although not completely understood, rotor distortion due to bolt-up is an issue commonly found in conventional brake rotor design. In this paper, bolt-up is addressed by utilizing optimization and contact analysis methods. These methods give greater insight to the contributing factors that influence bolt-up distortion. In particular, the optimization method defines the approximate geometric shape required for a brake rotor based on optimizing one or more variables. By utilizing the non-linear contact analysis method, the results from the optimization analysis are validated. In general, the results show that bolt-up distortion is not significantly affected by changing design features, variables or combinations of design features and variables. However, significant improvement in bolt-up distortion is noticed when changes are made to the brake rotor and the wheel bearing hub.
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

Robustness Considerations in the Design of a Stabilizer Bar System

2005-04-11
2005-01-1718
Modern automobiles utilize stabilizer bars to increase vehicle roll stiffness. Stabilizer bars are laterally mounted torsional springs which resist vertical displacement of the wheels relative to one another. A stabilizer bar is constructed in such a way that it will meet package constraints and fatigue requirements. In order to design a robust stabilizer bar, Taguchi's “Design of Experiment method” is used. The objective of this paper is to develop a robust stabilizer bar design that will maximize the fatigue life and the roll stiffness while minimizing weight. This study is based on results obtained by CAE analysis.
Technical Paper

Designing a Tuned Torsional Damper for Automotive Applications Using FEA and Optimization

2005-05-16
2005-01-2293
Tuned mass dampers are frequently used in vehicles to resolve vibration issues arising from problematic torsional modes. The design of a tuned damper is straightforward, but evaluating its effect on other system modes is time consuming. An upfront design tool will accelerate the process of designing and evaluating the damper's affect on system level dynamic characteristics. Computer aided engineering tools have been developed to design a tuned torsional damper using two different approaches. In the first approach, a two-degree of freedom torsional system model is utilized. In the second approach, a detailed finite element model of a driveline system is considered. In the second approach, the effect of the damper to the vehicle driveline system response at the hypoid pinion nose and other desired locations is studied to assess the effectiveness of the damper design. In both approaches, the damper rotational inertia is considered as a design variable.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Ionization Signal

2004-10-25
2004-01-2976
Maximum Brake Torque (MBT) timing for an internal combustion engine is the minimum advance of spark timing for best torque. Traditionally, MBT timing is an open loop feedforward control whose values are experimentally determined by conducting spark sweeps at different speed, load points and at different environmental operating conditions. Almost every calibration point needs a spark sweep to see if the engine can be operated at the MBT timing condition. If not, a certain degree of safety margin is needed to avoid pre-ignition or knock during engine operation. Open-loop spark mapping usually requires a tremendous amount of effort and time to achieve a satisfactory calibration. This paper shows that MBT timing can be achieved by regulating a composite feedback measure derived from the in-cylinder ionization signal referenced to a top dead center crank angle position. A PI (proportional and integral) controller is used to illustrate closed-loop control of MBT timing.
Technical Paper

Design of Experiments Application (DOE) to Prevent Mechanical Noise in Power Rack & Pinion Steering Systems

2004-11-16
2004-01-3377
Nowadays, ever market vehicle change affects body, suspension & steering gear systems. The purpose of this report is to quantify the methodology for evaluating and improving rattle mechanical noises in power rack & pinion steering systems. It is very important the correct process be used to adjust and approve the power steering gears in order to prevent the knock noise issue on services (warranty). This report describes how Visteon's Engineering makes efforts to achieve a reduction in warranty issues due to mechanical noise in the power steering gear, which affects its performance. We refer to this mechanical noise as “Knocking Noise” which derives from the gearing (meshing) adjustment loss. This experiment, supported by the Six Sigma methodology, led to new knowledge on how to improve the method of meshing adjust and test approval in process through of Design of Experiments (DOE).
Technical Paper

Communicating Outside of the Box: A Structural Model for Predicting Consumer Acceptance of In-Vehicle Electronics Implementations

2004-10-18
2004-21-0070
The era of the vehicle as a standalone non-connected entity is rapidly drawing to a close. The “Box” on four wheels is being opened to multiple communication channels based on consumer demand and expectations of the latest features, functions and content. Concurrently, automotive planners, marketers, engineers, and system architects are subject to increased complexity as a result of the rapidly evolving consumer electronics industry. This paper will discuss many of the limitations of existing automotive business models in attempting to successfully implement and meet consumer expectations. It will also propose a structural framework for automotive planners, marketers, engineers, and system architects to be able to better understand and predict consumer acceptance of electronics, multimedia features, and in-vehicle content access.
X