Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

Design Considerations & Characterization Test Methods for Activated Carbon Foam Hydrocarbon Traps in Automotive Air Induction Systems

2007-04-16
2007-01-1429
As OEMs race to build their sales fleets to meet ever more stringent California Air Resources Board (CARB) mobile source evaporative emissions requirements, new technologies are emerging to control pollution. Evaporative emissions emanating from sources up-stream in the induction flow and venting through the ducts of the engine air induction system (EIS) need to be controlled in order classify a salable vehicle as a Partial Zero Emissions Vehicle (PZEV) in the state of California. As other states explore adopting California's pollution control standards, demand for emissions control measures in the induction system is expected to increase. This paper documents some of the considerations of designing an adsorbent evaporative emissions device in to a 2007 production passenger car for the North American and Asian markets. This new evaporative emissions device will be permanently installed in the vehicle's air cleaner cover without requiring service for 150K miles (expected vehicle life).
Technical Paper

Investigating Cleaning Procedures for OEM Engine Air Intake Filters

2007-04-16
2007-01-1431
Most new passenger vehicles on the road today are equipped with a disposable OEM engine intake filter made of cellulose paper or synthetic non-woven media. Engine intake filters have an expected and recommended service life (by OEMs) of approximately 45K to 75K kilometers under normal driving conditions [ref. 2, 3, 4 & 5]. Majority of air filter element manufacturers do not recommend any type of cleaning to be performed on their OEM products. However, cleaning OEM and aftermarket air filters is common for end-customers in areas such as Asia, Middle East and South America. Vehicle owners in some regions would like to service and clean their own air filter elements in an effort to reduce vehicle operating costs. As a result, a number of OEMs selling passenger vehicles in these regions are requesting their suppliers explore solutions and the effects of whether cleaning air filter elements is appropriate for proper engine operation.
Technical Paper

Investigation of Alternative Combustion Crossing Stoichiometric Air Fuel Ratio for Clean Diesels

2007-07-23
2007-01-1840
Alternative combustion crossing stoichiometric air fuel ratio was investigated to utilize a 4-way catalyst system with LNT (lean NOx trap). The chemical mechanism of restricting soot formation reactions with low combustion temperature was combined with the physical mechanism of reducing smoke by lowering local equivalence ratio to enable low smoke rich and near rich combustion. A new combustion chamber for spatially and timely mixture formation phasing was developed to combine the two mechanisms and allow smooth EGR changing over a wide load range. Through this investigation, rich and near rich combustion to effectively utilize a 4-way catalyst system was realized. In addition, conditions suitable for LNT sulfur regeneration were realized from light to medium load.
Technical Paper

Engine Crankshaft Position Tracking Algorithms Applicable for Given Arbitrary Cam- and Crank-Shaft Position Signal Patterns

2007-04-16
2007-01-1597
This paper describes algorithms that can recognize and track the engine crankshaft position for arbitrary cam- and crank-shaft tooth wheel patterns in both steady-state and transient operating conditions. Crankshaft position tracking resolution is adjustable to accommodate different application requirements. The instantaneous crankshaft position information provided by the position tracking module form the basis for crankshaft angle domain (CAD) engine control and measurement functions such as precise injection / ignition controls and on-line cylinder pressure CAD analyses. The algorithms described make reconfiguration of the tracking module for different and arbitrary cam- and crank-shaft tooth wheel patterns very easy, which is valuable especially for prototyping engine control systems. The effectiveness of the algorithms is shown using test engines with different cam and crank signal patterns.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Design Parameter Tradeoffs for LED Headlamp Applications

2007-04-16
2007-01-0871
High-power LEDs and LED headlamps have become a serious consideration for the automotive industry. White LEDs have achieved the required performance for initial automotive headlamp applications. However tradeoffs among several attributes such as efficiency, cost, weight and performance profoundly affect LED headlamp development and need to be addressed by vehicle manufacturers, lamp set makers and LED source suppliers in order for LED headlamps to be effective. The solutions to these tradeoffs relates to the behavior of the LED sources, the thermo-mechanical integration of LEDs in a headlamp environment and input from the vehicle manufacturer regarding styling and packaging for an LED headlamp on the respective targeted vehicles.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

Development of the Sequence IVA Valve Train Wear Lubricant Test: Part 1

2000-06-19
2000-01-1820
The ASTM Sequence VE test evaluates lubricant performance for controlling sludge deposits and minimizing overhead camshaft lobe wear. ILSAC asked JAMA to develop a new valve train wear replacement test since the Sequence VE test engine hardware will become obsolete in the year 2000. JAMA submitted the JASO specification M 328-951) KA24E valve train wear test. This first report presents the results of technical studies conducted when JASO M 328-95 was reviewed and the ASTM standardized version of the KA24E test (the Sequence IVA) was proposed. The cam wear mechanism was studied with the goal of improving reproducibility and repeatability. Engine torque was specified to stabilize the NOx concentration in blow-by, which improved test precision. Additionally, the specifications for induction air humidity and temperature, oil temperature control, and test fuel composition were modified when the ASTM version of the KA24E test was proposed.
Technical Paper

Intentional Failure of a 5000 psig Hydrogen Cylinder Installed in an SUV Without Standard Required Safety Devices

2007-04-16
2007-01-0431
A vehicle's gasoline fuel tank was removed and replaced with a 5,000-psig, Type-III, aluminum-lined hydrogen cylinder. High-pressure cylinders are typically installed with a thermally-activated pressure relief device (PRD) designed to safely vent the contents of the cylinder in the event of accidental exposure to fire. The objective of this research was to assess the results of a catastrophic failure in the event that a PRD were ineffective. Therefore, no PRD was installed on the vehicle to ensure cylinder failure would occur. The cylinder was pressurized and exposed to a propane bonfire in order to simulate the occurrence of a gasoline pool fire on the underside of the vehicle. Measurements included temperature and carbon monoxide concentration inside the passenger compartment of the vehicle to evaluate tenability. Measurements on the exterior of the vehicle included blast wave pressures. Documentation included standard, infrared, and high-speed video.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

2006-04-03
2006-01-0054
This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
Technical Paper

On the Use of BEA with Engine Simulation as an Input to Predict Air Induction Inlet Noise

2005-05-16
2005-01-2350
Engine air induction noise can play a significant role in the reduction of vehicle interior noise levels and tuning interior sound quality. Given the need to reduce prototyping and testing costs, it is important to gain an understanding of the level and frequency structure of the noise radiating from the open inlet of the air induction system. Engine simulation used independently can predict inlet noise; however, its utility is limited to systems that are largely one-dimensional. Systems that exhibit a three-dimensional nature, such as the wave dynamics in an engine air cleaner, require a more intensive approach. Boundary Element Analysis (BEA) has been demonstrated to be a tool that can be used to predict the frequency response of ducted systems and is particularly useful in highly three-dimensional systems.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

An Efficient Alternative for Computing Algorithm Detection Thresholds

2006-04-03
2006-01-0009
Commonly, a significant event is detected when a normally stable engine parameter (ex. sensor voltage, sensor current, air flow, pedal position, fuel level, tire pressure, engine acceleration, etc.) transiently exceeds a calibrated detection threshold. Many implementations of detection thresholds rely on multi-input lookup tables or functions and are complex and difficult to calibrate. An approach is presented to minimize threshold calibration effort and complexity, while improving detection performance, by dynamically computing thresholds on-line based on current real-time data. Determining engine synchronization without a camshaft position sensor is presented as an illustrative application.
Technical Paper

A History of Mack Engine Lubricant Tests from 1985-2005: Mack T-7 through Mack T-12

2005-10-24
2005-01-3713
As on-highway, heavy-duty diesel engine designs have evolved to meet tighter emissions specifications and greater customer requirements, the crankcase environment for heavy-duty engine lubricants has changed. Engine lubricant quality is very important to help ensure engine durability, engine performance, and reduce maintenance downtime. Beginning in the late 1980's, a new Mack genuine oil specification and a new American Petroleum Institute (API) heavy-duty engine lubricant category have been introduced with each new U.S. heavy-duty, on-highway emissions specification. This paper documents the history and development of the Mack T-7, T-8, T-8A, T-8E, T-9, T-10, T-11, and T-12 engine lubricant tests.
X