Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Stability Control of Combination Vehicle

2001-03-05
2001-01-0138
This paper discusses the development of combination vehicle stability program (CVSP) at Visteon. It will describe why stability control is needed for combination vehicles and how the vehicle stability can be improved. We propose and evaluate controller structures and design methods for CVSP. These include driver's intent identification, combination vehicle status estimation and control, and fault detection / tolerance. In this paper, the braking and steering dynamics of car-trailer and tractor-semitrailer combinations, and the brake systems which should be used extensively to increase the stability of combination vehicles are presented. Also our development platform is introduced and the combination vehicle simulation results are presented. The definition of combination vehicles in this paper includes car-trailer and commercial tractor-semitrailer combinations since their vehicle dynamics are based on the same equations of motion.
Technical Paper

Instrument Clusters for Electric Vehicles

2001-03-05
2001-01-3959
Environmental concerns and changes in regulations around the world are turning mass-production electric vehicles (EVs) a reality. While the average driver is very familiar with the instruments available for the current internal combustion engine vehicles (ICEVs), the same does not hold for EVs. They require unique gages and tell-tales (also known as warning lights), tailored to their architecture, operating modes and intended use. This paper makes a comparison of the instruments used in ICEVs and EVs, suggesting a minimum set and standardization of the associated symbols.
Technical Paper

DSS, The Driver Stability System of Visteon

2002-03-04
2002-01-0782
This paper introduces the Driver Stability System (DSS) at Visteon. DSS is a new active comfort / safety system for automobiles which controls the seat bolsters independently in real time to enhance the lateral support of the occupants. Under turning maneuvers, DSS reacts to the vehicle dynamics to provide an increased contact area between the occupants and their seats, allowing optimal occupant location with respect to such variables as steering wheel angle, lateral acceleration, yaw rate, and vehicle velocity. The lateral force compensation is directly coupled to the dynamic movement of vehicle chassis and the change of road profile. The system consists of the seat bolster assembly including DC motors, wheel speed sensors, steering wheel sensor, lateral accelerometer, yaw rate sensor, and electronic control unit (ECU). This paper also discusses the control concept of DSS and its realistic controller structure.
Technical Paper

Occupant Knee Impact Simulations: A Parametric Study

2003-03-03
2003-01-1168
Occupant knee impact simulations are performed in the automotive industry as an integrated design process during the course of instrument panel (IP) development. All major automakers have different categories of dynamic testing methods as part of their design process in validating their designs against the FMVSS 208 requirement. This has given rise to a corresponding number of knee impact simulations performed at various stages of product development. This paper investigates the advantages and disadvantages of various types of these knee impact simulations. Only the knee load requirement portion of the FMVSS208 is considered in this paper.
Technical Paper

Driver Steering Performance Using Joystick vs. Steering Wheel Controls

2003-03-03
2003-01-0118
A fixed-base driving simulator with a 14-degree of freedom vehicle dynamics model was used to compare the lane tracking performance of test subjects using a joystick steering controller to that using a conventional steering wheel. Three driving situations were studied: a) straight-line highway driving, b) winding road driving (country road), and c) evasive maneuvering - a double lane change event. In addition, three different joystick force-feedback settings were evaluated: i) linear force feedback, ii) non-linear, speed sensitive force feedback and iii) no force feedback. A conventional steering wheel with typical passenger car force feedback tuning was used for all of the driving events for comparison.
X