Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Journal Article

Modeling of Combustion and Emissions Formation in Heavy Duty Diesel Engine Fueled by RME and Diesel Oil

2009-09-13
2009-24-0014
A comparative study on engine performance and emissions (NOx, soot) formation has been carried out for the Volvo D12C diesel engine fueled by Rapeseed Methyl Ester, RME and conventional diesel oil. The fuel and combustion models used in this paper are the modifications of those described in [1–3]. The numerical results for different load cases illustrate that for both fuels nearly 100% combustion efficiency was predicted; in the case of RME, the cumulative heat release was compared with the RME LHV, 37.2 kJ/g. To minimize soot and NOx emissions, 25–30% EGR levels depending on the engine loads and different injection timings were analyses. To illustrate the optimal engine performance conditions, a special technique based on the time-transient parametric ϕ-T maps [4] has been used.
Journal Article

Effects of High Injection Pressure, EGR and Charge Air Pressure on Combustion and Emissions in an HD Single Cylinder Diesel Engine

2009-11-02
2009-01-2815
When increasing EGR from low levels to a level that corresponds to low temperature combustion, soot emissions initially increase due to lower soot oxidation before decreasing to almost zero due to very low soot formation. At the EGR level where soot emissions start to increase, the NOx emissions are low, but not sufficiently low to comply with future emission standards and at the EGR level where low temperature combustion occurs CO and HC emissions are too high. The purpose of this study was to investigate the possibilities for shifting the so-called soot bump (where soot levels are increased) to higher EGR levels, or to reduce the magnitude of the soot bump using very high injection pressures (up to 240 MPa) while reducing the NOx emissions using EGR. The possibility of reducing the CO and HC emissions at high EGR levels due to the increased mixing caused by higher injection pressure was also investigated and the flame was visualized using an endoscope at chosen EGR values.
Journal Article

Reed Valve CFD Simulation of a 2-Stroke Engine Using a 2D Model Including the Complete Engine Geometry

2010-09-28
2010-32-0015
CFD has been widely used to predict the flow behavior inside 2-stroke engines over the past twenty years. Usually a mass flow profile or a simple 0D model is used for the inlet boundary condition, which replaces the complete intake geometry, such as reed valve, throttle, and air box geometries. For a CFD simulation which takes into account the exact reed valve geometry, a simulation of all above mentioned domains is required, as these domains are coupled together and thus interact. As the high speed of the engine affects the opening dynamic and closure of the reed valve, the transient data from the crank case volume and the section upstream the reed valve have an important influence on the reed petal dynamic and therewith on the sucked fresh air mass of the engine. This paper covers a methodology for the transient CFD simulation of the reed petals of a 2-stroke engine by using a 2D model.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines

2020-04-14
2020-01-1105
Turbulence anisotropy has a great influence on mixture formation and flame propagation in internal combustion engines. However, the visualization of turbulence in simulations is not straightforward; traditional methods lack the ability to display the anisotropic properties in the engine geometry. Instead, they use invariant maps, and important information about the locality of the turbulence anisotropy is lost. This paper overcomes this shortcoming by visualizing the anisotropy directly in the physical domain. Componentality contours are applied to directly visualize the anisotropic properties of turbulence in the three-dimensional engine geometry. Using an RGB (red, green, blue) color map, the three limiting states of turbulence (one-component, axisymmetric two-component and isotropic turbulence) are displayed in the three-dimensional physical domain.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the study is to investigate efficient computational aeroacoustics (CAA) simulation processes to assist the cooling-fan installation design. In this paper we report the current progress of the investigation, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Technical Paper

Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine

2020-09-15
2020-01-2199
To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Journal Article

Evaporation and Cold Start Behavior of Bio-Fuels in Non-Automotive Applications

2016-11-08
2016-32-0034
Worldwide increasing energy consumption, decreasing energy resources and continuous restriction of emission legislation cause a rethinking in the development of internal combustion engines and fuels. Alternative renewable fuels, so called bio-fuels, have the potential to contribute to environmentally friendly propulsion systems. This study concentrates on the usage of alcohol fuels like ethanol, methanol and butanol in non-automotive high power engines, handheld power tools and garden equipment with the focus on mixture formation and cold start capability. Although bio-fuels have been investigated intensely for the use in automotive applications yet, the different propulsion systems and operation scenarios of nonautomotive applications raise the need for specific research. A zero dimensional vaporization model has been set up to calculate the connections between physical properties and mixture formation.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Objective Evaluation of Steering Rack Force Behaviour and Identification of Feedback Information

2016-09-02
2016-01-9112
Electric power steering systems (EPS) are characterized by high inertia and therefore by a considerably damped transmission behaviour. While this is desirable for comfort-oriented designs, EPS do not provide enough feedback of the driving conditions, especially for drivers with a sporty driving style. The systematic actuation of the electric motor of an EPS makes it possible to specifically increment the intensity of the response. In this context, the road-sided induced forces of the tie rod and the steering rack force provide all the information for the steering system’s response. Former concepts differentiate between use and disturbance information by defining frequency ranges. Since these ranges overlap strongly, this differentiation does not segment distinctively. The presented article describes a method to identify useful information in the feedback path of the steering system depending on the driving situation.
Journal Article

Experimental Optimization of a Small Bore Natural Gas-Diesel Dual Fuel Engine with Direct Fuel Injection

2016-04-05
2016-01-0783
Dual fuel combustion processes, which burn varying ratios of natural gas and diesel, are an attempt to reach high efficiencies similar to diesel engines while exploiting the CO2 savings potential of natural gas. As shown in earlier studies, the main challenge of this combustion process is the high emission of unburned hydrocarbons during low load operation. Many publications have focused on a layout which utilizes port injection of natural gas and a direct injection of diesel to initiate combustion. However, previous studies indicated that a sequential direct injection of both fuels is more promising. It enables charge stratification of natural gas and air, whereby a remarkable reduction of the unburned hydrocarbon emissions was observed. This work develops this approach further, utilizing a low pressure direct injection of natural gas.
Journal Article

Advanced Knock Detection for Diesel/Natural Gas Engine Operation

2016-04-05
2016-01-0785
As emission limits become increasingly stringent and the price of gaseous fuels decreases, more emphasis is being placed on promoting gas engines. In the field of large engines for power generation, dual fuel combustion concepts that run on diesel/natural gas are particularly attractive. Knock in diesel/natural gas dual fuel engines is a well known yet not fully understood complex phenomenon that requires consideration in any attempt to increase load and efficiency. Thus combustion concept development requires a reliable yet robust methodology for detecting knock in order to ensure knock-free engine operation. Operating parameters such as rail pressure, start of injection and amount of diesel injected are the factors that influence oscillations in the in-cylinder pressure trace after the start of combustion. Oscillations in the pre-mixed combustion phase, or ringing, are caused by the rapid conversion of large parts of the injected diesel.
X