Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

2007-01-23
2007-01-0009
Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine

2003-03-03
2003-01-0753
Operating an engine in homogeneous charge compression ignition (HCCI) mode requires the air fuel mixture to be very lean or highly diluted with residuals. This is in order to slow the kinetics down and to avoid too rapid heat release. Consequently, the operational window for the engine in HCCI mode is not the same as for the engine operating in spark ignited (SI) mode. Homogeneous charge compression ignition engine mode, in this study, is accomplished by trapping residual mass using variable valve timing. With the residual trapping method, the engine cannot be started in HCCI mode and due to the dilution, the engine in HCCI mode can only be operated in the part - load regime. Hence, a mode change between spark ignited and HCCI modes, and vice versa is required. This study reports the development of a mode change strategy for a single cylinder camless engine, and its successful implementation in a camless multi cylinder engine.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

2004-06-08
2004-01-1967
A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.

2016-04-05
2016-01-0935
Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3. This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings.
Technical Paper

Cycle to Cycle Variations: Their Influence on Cycle Resolved Gas Temperature and Unburned Hydrocarbons from a Camless Gasoline Compression Ignition Engine

2002-03-04
2002-01-0110
A single cylinder, naturally aspirated, four-stroke and camless gasoline engine was operated in gasoline compression ignition mode or otherwise known as homogeneous charge compression ignition (HCCI) mode. The valve timing could be adjusted during engine operation, which made it possible to operate the engine on HCCI combustion in the part-load regime of a 5-cylinder 2.4 liter engine. Cycle to cycle variation in cylinder pressure is caused by the shifts in the auto-ignition timing of the air-fuel mixture. These variations during HCCI combustion were found to, be predictable to some extent, in the sense that an early phased combustion follows a later phased one and vice versa. When the engine was operated in spark ignition mode, a late combustion was correlated with a high gas temperature. No such correlation was found when the engine was operated in HCCI mode.
X