Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Technical Paper

High Load Lean SI-Combustion Analysis of DI Methane and Gasoline Using Optical Diagnostics with Endoscope

2021-09-05
2021-24-0046
Homogeneous lean spark-ignited combustion is known for its thermodynamic advantages over conventional stoichiometric combustion but remains a challenge due to combustion instability, engine knock and NOx emissions especially at higher engine loads above the naturally aspirated limit. Investigations have shown that lean combustion can partly suppress knock, which is why the concept may be particularly advantageous in high load, boosted operation in downsized engines with high compression ratios. However, the authors have previously shown that this is not true for all cases due to the appearance of a lean load limit, which is defined by the convergence of the knock limit and combustion stability limit. Therefore, further research has been conducted with the alternative and potentially renewable fuel methane which has higher resistance to autoignition compared to gasoline.
Technical Paper

Simulation Methodology for Duty Cycle based Fuel Consumption Calculation for Heavy Commercial Vehicles

2021-09-22
2021-26-0221
Automobile industry is facing challenges in the field of technological innovation and achieving minimum Total Cost of Ownership (TCO) despite rise in fuel prices. To overcome these challenges is certainly a challenging task. In doing so, automobile sector is mainly focused on passenger safety, comfort, reliability, meeting stringent emission norms, and above all reducing the vehicle fuel consumption. Referring to the Paris climate agreement, and India’s commitment to reduce the CO2 intensity by 33% - 35% by 2030 below the 2005 levels [1], it is imperative to lay down strong policies and procedure to curb the fuel consumption to contribute for reduction in carbon foot print and oil imports. Transportation sector is majorly responsible for the GHG Emission of which the CO2 emission from commercial vehicles is nearly 73% [2], although the total sales of commercial vehicles are around 4% of cumulative vehicle sales.
Journal Article

CFD Simulations of one Period of a Louvered Fin where the Airflow is Inclined Relative to the Heat Exchanger

2015-04-14
2015-01-1656
This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
Journal Article

Optimal Vehicle Control for Fuel Efficiency

2015-09-29
2015-01-2875
CONVENIENT is a project where prediction and integrated control are applied on several subsystems with electrified actuators. The technologies developed in this project are applied to a long-haul tractor and semi-trailer combination. A Volvo truck meeting the Eu6 emission standard is rebuilt with a number of controllable electrified actuators. An e-Horizon system collects information about future road topography and speed limits. Controllable aerodynamic wind deflectors reduce the wind drag. The tractor is also equipped with a full digital cluster for human machine interface development. A primary project goal is to develop a model-based optimal controller that uses predictive information from the e-Horizon system in order to minimize fuel consumption. Several energy buffers are controlled in an integrated and optimal way using model predictive control. Several buffers are considered, such as the cooling system, the battery, and the vehicle kinetic energy.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Journal Article

Experimental and Numerical Investigation of Wheel Housing Aerodynamics on Heavy Trucks

2012-04-16
2012-01-0106
Wheel and underbody aerodynamics have become important topics in the search to reduce the aerodynamic drag of the heavy trucks. This study aims to investigate, experimentally as well as numerically, the local flow field around the wheels and in the wheel housing on a heavy truck; and how different approaches to modelling the wheel rotation in CFD influences the results. Emphasis is on effects due to ground simulation, and both moving ground and wheel rotation were requirements for this study. A 1:4-scale model of part of a heavy truck geometry has been developed. During the model design numerical simulations were used to optimise the shape, in order to replicate the flow field near the wheel of a complete truck. This was done by changing the flow angles of the incoming and exiting flows, and by keeping the mass flow rates in to, and out of, the wheel housing at the same ratios as in a reference full size vehicle.
Journal Article

Aerodynamic Investigation of Gap Treatment- and Chassis Skirts Strategies for a Novel Long-Haul Vehicle Combination

2012-09-24
2012-01-2044
Constantly lowering emissions legislation and the fact that fuel prices have increased tremendously over recent years, have forced vehicle manufacturers to develop more and more energy-efficient vehicles. The aerodynamic drag is responsible for a substantial part of the total driving resistance for a vehicle, especially at higher velocities; thus it is important to reduce this factor as much as possible for vehicles commonly operating in these conditions. In an attempt to improve transport efficiency, longer vehicle combinations are becoming more common. By replacing some of the shorter vehicle combinations with longer combinations, the same amount of cargo can be transported with fewer vehicles; hence there is large potential for fuel savings. The knowledge of the aerodynamic properties of such vehicles is somewhat limited, and therefore interesting to study.
Journal Article

Performance of an Automotive Under-Body Diffuser Applied to a Sedan and a Wagon Vehicle

2013-04-08
2013-01-0952
Reducing resistance forces all over the vehicle is the most sustainable way to reduce fuel consumption. Aerodynamic drag is the dominating resistance force at highway speeds, and the power required to overcome this force increases by the power three of speed. The exterior body and especially the under-body and rear-end geometry of a passenger car are significant contributors to the overall aerodynamic drag. To reduce the aerodynamic drag it is of great importance to have a good pressure recovery at the rear. Since pressure drag is the dominating aerodynamic drag force for a passenger vehicle, the drag force will be a measure of the difference between the pressure in front and at the rear. There is high stagnation pressure at the front which requires a base pressure as high as possible. The pressure will recover from the sides by a taper angle, from the top by the rear wind screen, and from the bottom, by a diffuser.
Journal Article

Valve Profile Adaptation, Stratification, Boosting and 2-Stroke Strategies for Raising Loads of Gasoline HCCI Engines

2012-04-16
2012-01-1108
The development of high efficiency powertrains is a key objective for car manufacturers. One approach for improving the efficiency of gasoline engines is based on homogeneous charge compression ignition, HCCI, which provides higher efficiency than conventional strategies. However, HCCI is only currently viable at relatively low loads, primarily because at high loads it involves rapid combustion that generates pressure oscillations in the cylinder (ringing), and partly because it gives rise to relatively high NOX emissions. This paper describes studies aimed at increasing the viability of HCCI combustion at higher loads by using fully flexible valve trains, direct injection with charge stratification (SCCI), and intake air boosting. These approaches were complemented by using EGR to control NOX emissions by stoichiometric operation, which enables the use of a three-way catalyst.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

Determining the Vertical and Longitudinal First Mode of Vibration of a Wide Base FEA Truck Tire

2016-04-05
2016-01-1308
The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
Technical Paper

Validation of the VSB2 Spray Model for Ethanol under Diesel like Conditions

2017-10-08
2017-01-2193
When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
Technical Paper

Influence of Considering Non-Ideal Thermodynamics on Droplet Evaporation and Spray Formation (for Gasoline Direct Injection Engine Conditions) Using VSB2 Spray Model

2018-04-03
2018-01-0181
This work utilizes previously developed VSB2 (VSB2 Stochastic Blob and Bubble) multicomponent fuel spray model to study significance of using non-ideal thermodynamics for droplet evaporation under direct injection engine like operating conditions. Non-ideal thermodynamics is used to account for vapor-liquid equilibrium arising from evaporation of multicomponent fuel droplets. In specific, the evaporation of ethanol/iso-octane blend is studied in this work. Two compositions of the blend are tested, E-10 and E-85 respectively (the number denotes percentage of ethanol in blend). The VSB2 spray model is implemented into OpenFoam CFD code which is used to study evaporation of the blend in constant volume combustion vessel. Liquid and vapor penetration lengths for the E-10 case are calculated and compared with the experiment. The simulation results show reasonable agreement with the experiment. Simulation is performed with two methods- ideal and non-ideal thermodynamics respectively.
Technical Paper

Numerical Analysis of Combustion and Emissions Formation in a Heavy Duty DME Engine

2012-04-16
2012-01-0156
When using dimethyl ether (DME) to fuel diesel engines at high load and speed, applying high amounts of exhaust gas recirculation (EGR) to limit NOX emissions, carbon monoxide (CO) emissions are generally high. To address this issue, the combustion and emission processes in such engines were analyzed with the three-dimensional CFD KIVA3V code. The combustion sub-mechanism (76 species and 375 reactions) was validated by comparing simulated ignition delays and flame velocities to reference data under diesel-like and atmospheric conditions, respectively. In addition, simulated and experimentally determined rate of heat release (RoHR) curves and emission data were compared for a heavy-duty single-cylinder DME engine (displaced volume, 2.02 liters) with DME-adapted piston and nozzle geometries. The simulated RoHR curves captured the main features of the experimentally measured curves, but deviated in the premixed (higher peak) and late combustion phases (too high).
Technical Paper

3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism

2012-04-16
2012-01-0151
A detailed reaction mechanism for the combustion of biodiesel fuels has recently been developed by Westbrook and co-workers. This detailed mechanism involves 5037 species and 19990 reactions, which prohibits its direct use in computational fluid dynamic (CFD) applications. In the present work, various mechanism reduction methods included in the Reaction Workbench software were used to derive a semi-detailed biodiesel combustion mechanism, while maintaining the accuracy of the master mechanism for a desired set of engine conditions. The reduced combustion mechanism for a five-component biodiesel fuel was employed in the FORTÉ CFD simulation package to take advantage of advanced chemistry solver methodologies and advanced spray models. Simulations were performed for a Volvo D12C heavy diesel engine fueled by RME fuel using a 72° sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations.
Technical Paper

Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

2012-04-16
2012-01-0684
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
X