Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fugine as Single-Point Compression Engine based on Supermulti-Jets Colliding with Pulse: Combustion Test of Second Prototype Engine with Strongly-Asymmetric Double-Piston System

2015-09-01
2015-01-1964
We proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve incredible thermal efficiency. The high efficiency can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We developed a small prototype engine system for gasoline, which has a strongly-asymmetric double piston and the supermulti-jets colliding with pulse. In this report, we will show combustion experimental results at startup and at steady state operation. We obtained exhaust temperature over 100 degree Celsius and pressure data, which imply auto-ignition occurrence of gasoline.
Technical Paper

Physical Theory of the Single-Point Auto-Ignition Engine Based on Supermulti-Jets Colliding with Pulse: Leading to Thermal Efficiency over 60% at Various Engine Speeds and Loads of Automobiles

2014-10-13
2014-01-2640
This paper proposes a new compressive combustion principle for an inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve incredible thermal efficiency over 60% even for small engines having strokes shorter than 100mm, whereas eco-friendly gasoline engines for today's automobiles use less than 35% of the supplied energy for work on average. This level of efficiency can be achieved with colliding supermulti-jets that create air insulation to encase burned gas around the chamber center, thereby avoiding contact with the chamber walls, including the piston. Emphasis is also placed on the fact that higher compression results in less combustion noise because of the encasing effect. We will first show that numerical computations done for two jets colliding in line quantitatively agree with shock-tube experiment and theoretical value based on compressible fluid mechanics.
X