Refine Your Search

Topic

Author

Search Results

Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Relationship between Turbulent Burning Velocity and Karlovitz Number under EGR Conditions

2020-09-15
2020-01-2051
The purpose of this paper is to find a universal law to predict a turbulent burning velocity under various operating conditions and engine specifications. This paper presents the relationship between turbulent burning velocity and Karlovitz number. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine speed and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. Karlovitz number was calculated with Three Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical reaction calculation, which condition was based on the experiment. The experimental and calculation results show that turbulent burning velocity is predicted by using Karlovitz number in the engine conditions, which varies depending on engine speed, EGR rates and the designs of intake ports.
Technical Paper

Reaction Path Analysis and Modeling of NOx Reduction in a Cu-chabazite SCR Catalyst Considering Cu Redox Chemistry and Reversible Hydrolysis of Cu Sites

2020-09-15
2020-01-2181
In this study, reaction path analysis and modeling of NOx reduction phenomena by selective catalytic reduction (SCR) with NH3 over a Cu-chabazite catalyst were conducted considering changes in the valence state of Cu sites and local structure due to differences in ligands to the Cu sites. The analysis showed that in the Cu-chabazite catalyst, NOx was mainly reduced by adsorbed NH3 on divalent Cu sites accompanied by a change in valence state of Cu from divalent to monovalent. It is known that the activation energy of NOx reduction on a Cu-chabazite catalyst changes between low temperatures ≤ 200 °C and mid to high temperatures ≥ 300 °C. To express this phenomenon, a reversible hydrolysis reaction based on the difference in coordination state of hydroxyl groups (OH−) to Cu sites at low and high temperatures was introduced into the model.
Technical Paper

Modeling and Controlling Active Regeneration of a Diesel Particulate Filter

2020-09-15
2020-01-2176
Heavy soot deposition in wall-flow type diesel particulate filters reduces engine output and fuel efficiency. This necessitates forced regeneration to oxidize soot via exothermic reactions in a diesel oxidation catalyst upstream of the Diesel Particulate Filter (DPF). Soot loading in the wall of the DPF during forced regeneration causes much greater pressure drops than cake deposition, which is undesirable because high pressure drops reduce engine performance. We show that the description of soot deposition using a DPF model is improved by using a shrinking sphere soot oxidation sub-model. We then use this revised model to analyze cake deposition during forced regeneration, and to study the effects of varying the forced regeneration temperature and duration on the local soot reaction rate and soot mass distribution in the radial and longitudinal directions of the DPF channels during forced regeneration.
Technical Paper

A Model for Predicting Turbulent Burning Velocity by using Karlovitz Number and Markstein Number under EGR Conditions

2021-09-21
2021-01-1146
The purpose of this paper is to build up a model for predicting turbulent burning velocity which can be used for One-Dimensional (1D) engine simulation. This paper presents the relationship between turbulent burning velocity, the Karlovitz number, and the Markstein number for building up the prediction model. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine loads and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. The Karlovitz number was calculated using Three-Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical kinetics simulation with a premixed laminar flame model. The Markstein number was also calculated using detailed chemical kinetics simulation with the Extinction of Opposed-flow Flame model.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance

2006-10-16
2006-01-3442
For diesel emission control systems containing a Diesel Oxidation Catalyst (DOC) and a Catalyzed Soot Filter (CSF) the DOC is used to oxidize the additional fuel injected into the cylinder and/or the exhaust pipe for the purpose of increasing the CSF inlet temperature during the soot regeneration. Hydrocarbon (HC) oxidation performance of the DOC is affected by HC species as well as a catalyst design, i.e., precious metal species, support materials and additives. How engine-out HC species vary as a function of fuel supply conditions is not well understood. In addition, the relationship between catalyst design and oxidation activity of different hydrocarbon species requires further study. In this study, diesel fuel was supplied by in-cylinder, post injection and exhaust HC species were measured by a gas chromatograph-mass spectrometry (GC-MS) and a gas analyzer. The post injection timing was set to either 73°, 88° or 98° ATDC(after top dead center).
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Technical Paper

Detailed Analysis of Particulate Matter Emitted from Biofueled Diesel Combustion with High EGR

2009-04-20
2009-01-0483
Difference of engine combustion characteristics, species and amount of exhaust gas and PM (particulate matter consisted of SOF and Soot and Ash), and especially PM oxidation characteristics were studied when diesel fuel or bio-fuel, here PME (palm oil methyl ester) as an example, was used as a fuel. The fueling rate was adjusted to obtain the same torque for both fuels and engine was operated under several range of EGR (Exhaust Gas Recirculation) ratio. Under such conditions, PME showed shorter ignition delay time and lower R.H.R (rate of heat release) under 0-40% EGR ratio. With respect to engine exhaust gas species, CO, NO, THC and HCHO, CH3CHO concentration was almost the same when the EGR ratio is higher than 35% (Intake-Air/Fuel: A/F=20). However, PME also showed lower exhaust gas emission when the EGR ratio is higher than 30%.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

Improvement of Combustion in a Dual Fuel Natural Gas Engine with Half the Number of Cylinders

2003-05-19
2003-01-1938
A dual fuel natural gas diesel engine suffers from remarkably lower thermal efficiency and higher THC, CO emissions at lower load because of its lower burned mass fraction caused by the lean pre-mixture. To overcome this inevitable disadvantage at lower load, two methods of reducing the number of operating cylinders were examined. One method was to use the two cylinders operation while the second one was to use the quasi-two cylinders operation. As a result, it was found that the unburned hydrocarbons and CO emissions could be favorably reduced with the improvement of thermal efficiency by reducing the number of cylinders to half for a dual fuel natural gas diesel engine. Moreover, it was also found that the quasi-two cylinders operation could improve the torque fluctuation more compared to the two cylinders operation.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics

2003-05-19
2003-01-1939
Natural gas pre-mixture is ignited by a small amount of pilot fuel in the dual fuel engine. In this paper, numerical studies were carried out to investigate the combustion and exhaust gas emissions formation process of this engine type by using a multi dimensional model combined with the detailed chemical kinetics including 57 chemical species and 290 elementary reactions. In calculation, the effect of the pre-mixture concentration on combustion was examined. The result indicated that the increased concentration of natural gas could improve the burning fraction and THC, CO emissions due to the increased pre-mixture consumption rate and the cylinders gas temperature.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle Diameter on the Pressure Drop in DPF Regeneration Mode-

2016-10-17
2016-01-2282
Experimental and numerical studies on the combustion of the particulate matter in the diesel particulate filter with the particulate matter loaded under different particulate matter loading condition were carried out. It was observed that the pressure losses through diesel particulate filter loaded with particulate matter having different mean aggregate particle diameters during both particulate matter loading and combustion periods. Diesel particulate filter regeneration mode was controlled with introducing a hot gas created in Diesel Oxidation Catalyst that oxidized hydrocarbon injected by a fuel injector placed on an exhaust gas pipe. The combustion amount was calculated with using a total diesel particulate filter weight measured by the weight meter both before and after the particulate matter regeneration event.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
X