Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Transient Emissions Tests of Cummins N-14 Natural Gas Engine

A heavy-duty engine testing project involving Cummins Engine Company, Southwest Research Institute (SwRI), and West Virginia University (WVU) has been completed. This project evaluated the transient exhaust gas emissions rate of Cummins N-14 heavy-duty diesel engines converted to natural gas. Three heavy-duty N-14 diesel engines were converted to run on natural gas using a lean burn strategy by SwRI and are in field service in Santa Barbara Air Pollution Control District (SBAPCD). Two of the engines were tested under a steady-state cycle that simulates the U.S. heavy-duty transient cycle. The third engine was tested at the WVU Engine Research Laboratory following the U.S. Federal Test Procedure (FTP). However, at WVU, lean burn combustion strategy was shifted rich of stoichiometric during idling time of the FTP test. This may have caused the engine to produce more total hydrocarbons (THC) and carbon monoxide (CO).
Technical Paper

Comparative Emissions from Natural Gas and Diesel Buses

Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Typically, the transportable chassis dynamo meter is set up at a local transit agency and the selected buses are tested using the fuel in the vehicle at the time of the test. The dynamometer may be set up to operate indoors or outdoors depending on the space available at the site. Samples of the fuels being used at the site are collected and sent to the laboratory for analysis and this information is then sent together with emissions data to the Alternate Fuels Data Center at the National Renewable Energy Laboratory. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Hydrocarbon Speciation of a Lean Burn Spark Ignited Engine

A research program at West Virginia University sought to identify and quantify the individual hydrocarbon species present in alternative fuel exhaust. Compressed natural gas (CNG) has been one of the most widely researched fuels proposed to replace liquid petroleum fuels. Regulated CNG non-methane hydrocarbon emissions are often lower than hydrocarbon emissions from conventional liquid fuels because of the absence of heavier hydrocarbons in the fuel. Reducing NOx and non-methane organic gas (NMOG) emission levels reduces the ozone forming potential (OFP) of the exhaust gases. A Hercules GTA 3.7 liter medium duty CNG engine was operated at seven load and speed set points using local supply CNG gas. The engine was operated at several rated, intermediate and idle speed set points. The engine was operated while the air/fuel ratio value was varied.
Technical Paper

Effect of Fuel Composition on the Operation of a Lean Burn Natural Gas Engine

With the implementation of a closed loop fuel control system, operation of lean-burn natural gas engines can be optimized in terms of reducing emissions while maximizing efficiency. Such a system would compensate for variations in fuel composition, but also would correct for variations in volumetric efficiency due to immediate engine history and long-term engine component wear. Present day engine controllers perform well when they are operated with the same gas composition for which they were calibrated, but because fuel composition varies geographically as well as seasonally, some method of compensation is required. A closed loop control system on a medium-duty lean-burn engine will enhance performance by maintaining the desired air-fuel ratio to eliminate any unwanted rich or lean excursions (relative to the desired air-fuel ratio) that produce excess engine-out emissions. Such a system can also guard against internal engine damage due to overheating and/or engine knock.
Technical Paper

RF Plasma Ignition System Concept for Lean Burn Internal Combustion Engines

This paper describes a Radio Frequency (RF) plasma ignitor concept intended for application to internal combustion engines. This system features a high Q quarter-wave coaxial cavity resonator, of simple construction, serving as a tuning element in the RF power supply, a voltage magnifier, and a discharge device attached to the combustion chamber. The resonator is filled with a dielectric and open at the discharge end. The center conductor is terminated with a revolute solid capacitive electrode which concentrates the associated electric field. This non-uniform electric field within the air/fuel mixture creates a corona discharge plasma which is excited at the RF operating frequency and the resulting ionic species recombine to initiate combustion. The RF excitation, relative to DC, reduces breakdown voltage and electrode degradation.
Technical Paper

The Future of the Internal Combustion Engine After “Diesel-Gate”

The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.