Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Journal Article

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-22
2019-01-2599
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall.
X