Refine Your Search

Topic

Author

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Application of Two Fuel Cells in Hybrid Electric Vehicles

2008-10-06
2008-01-2418
Fuel economy is an important issue in urban driving cycle where vehicles are required to operate most of the time at lower power than the average demand. High power fuel cells operate economically at higher loads. Hence, conventional combination of a high power fuel cell and an additional storage device such as ultracapacitor or battery units does not necessarily provide an economic configuration. This paper offers a new configuration that consists of two fuel cells combined with a battery unit to provide a fuel efficient source of power for hybrid electric fuel cell vehicles in urban driving applications. The control algorithm and power management strategy for a combination of two downsized fuel cells and a storage device is provided and its performance of operation is compared with traditional topologies.
Technical Paper

The Development of a Fourth Generation Hybrid Electric Vehicle at West Virginia University

2001-03-05
2001-01-0682
As a part of the FutureTruck 2000 advanced technology student vehicle competition sponsored by the US Department of Energy and General Motors, West Virginia University has converted a full-size sport utility vehicle into a high fuel efficiency, low emissions vehicle. The environmental impact of the Chevrolet Suburban SUV, in terms of both greenhouse gas emissions and exhaust emissions, was reduced through hybridization without losing any of the functionality and utility of the base vehicle. The approach taken was one of using a high efficiency, state-of-the-art direct injection, turbocharged diesel engine coupled to a high output electric traction motor for power assist and to recover regenerative braking energy. The vehicle employs a state-of-the-art combination lean NOx catalyst, oxidation catalyst and particulate filter to ensure low exhaust emissions.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Technological Evaluation of Fuel Efficiency Improvement Concepts to Meet Future Regulatory Requirements in the North American Market

2002-10-21
2002-01-2809
As fuel economy and emissions regulations increase in stringence, automakers face ever increasing difficulty in meeting government imposed standards. In this paper a study of fuel economy improving techniques used to meet these regulations, notably Corporate Average Fuel Economy (CAFE), and the upper limit on the effectiveness of these techniques is presented. The effects of external vehicle improvements, such as lightweighting, rolling resistance and aerodynamic improvements were investigated to illustrate the limitations of these methods to dramatically improve overall vehicle efficiency. Engine efficiency improvements, including the effects of compression ignition (unthrottled) versus spark ignition (throttled) engine types were examined. Other engine efficiency areas that were investigated were the implementation of cylinder deactivation and gasoline direct injection engines.
Technical Paper

Celebrating the Exclaim!

2003-03-03
2003-01-1260
West Virginia University redesigned a 2002 Ford Explorer and created a diesel electric hybrid vehicle to satisfy the goals of the 2002 FutureTruck competition. These goals were to demonstrate a 25% improvement in fuel economy, to reduce greenhouse gas emissions, to achieve California ULEV emissions, to demonstrate 1/8-mile acceleration of 11.5 seconds or less, and to maintain vehicular comforts and performance. West Virginia University's 2002 hybrid sport utility vehicle (SUV), the Exclaim!, meets or exceeds these goals. Using a post-transmission parallel configuration, WVU integrated a 2.5L Detroit Diesel Corporation engine along with a Unique Mobility 75kW electric motor to replace the stock drivetrain. With an emphasis on maintaining performance, WVU strived to improve areas where SUVs have traditionally performed poorly: fuel economy and emissions. Using regenerative braking, fuel economy has been significantly improved.
Technical Paper

E-KERS Energy Management Crucial to Improved Fuel Economy

2016-09-18
2016-01-1947
The operation of a conventional passenger car is characterised by increasing or maintaining the kinetic energy, when accelerating or cruising the vehicle, and reducing the kinetic energy by using the brakes. While the energy taken by the friction brakes to slow the vehicle is dissipated into heat, the introduction of Kinetic Energy Recovery Systems (KERS) has permitted the recovery of part of the braking energy. This reduces the amount of energy needed from the internal combustion engine (ICE). The contribution reviews the latest developments in electric KERS (E-KERS), with emphasis to round trip efficiency wheels to wheels and electrification of the powertrain. The contribution considers the opportunity to connect the E-KERS traction battery to other electric machines, such as an electrically assisted turbocharger (E-TC) connected to a motor/generator unit, or an electric water pump (EWP), to further optimise the vehicle operation.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Technical Paper

The Influence of High Reactivity Fuel Properties on Reactivity Controlled Compression Ignition Combustion

2017-09-04
2017-24-0080
Reactivity controlled compression ignition (RCCI) is a form of dual-fuel combustion that exploits the reactivity difference between two fuels to control combustion phasing. This combustion approach limits the formation of oxides of nitrogen (NOX) and soot while retaining high thermal efficiency. The research presented herein was performed to determine the influences that high reactivity (diesel) fuel properties have on RCCI combustion characteristics, exhaust emissions, fuel efficiency, and the operable load range. A 4-cylinder, 1.9 liter, light-duty compression-ignition (CI) engine was converted to run on diesel fuel (high reactivity fuel) and compressed natural gas (CNG) (low reactivity fuel). The engine was operated at 2100 revolutions per minute (RPM), and at two different loads, 3.6 bar brake mean effective pressure (BMEP) and 6 bar BMEP.
Technical Paper

Analysis of Lightweighting Design Alternatives for Automotive Components

2011-09-13
2011-01-2287
Gasoline-powered vehicles compose the vast majority of all light-duty vehicles in the United States. Improving fuel economy is currently a topic of great interest due to the rapid rise in gasoline costs as well as new fuel-economy and greenhouse-gas emissions standards. The Chevrolet Silverado is currently one of the top selling trucks in the U.S. and has been previously modeled using the commercial finite element code LS-DYNA by the National Crash Analysis Center (NCAC). This state-of the art model was employed to examine alternative weight saving configurations using material alternatives and replacement of traditional steel with composite panels. Detailed mass distribution analysis demonstrated the chassis assembly to be an ideal candidate for weight reduction and was redesigned using Aluminum 7075-T6 Alloy and Magnesium Alloy HM41A-F.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

System Architecture for Cooperative Vehicle-Pedestrian Safety Applications Using DSRC Communication

2015-04-14
2015-01-0290
Pedestrians account for a significant ratio of traffic fatalities; as a result, research on methods of reducing vehicle-pedestrian crashes is of importance. In this paper, we describe a system architecture that allows the use of vehicle-to-pedestrian (V2P) communication as a means of generating situational awareness and eventually predicting hazards and warning drivers and pedestrians. In contrast, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication for safety applications, V2P has not received much attention. One major reason for this lack of attention had been the unavailability of communication mechanisms between pedestrians and vehicles. Recent advances in enabling Wi-Fi and dedicated short range communication (DSRC) based communication using smart-phones is changing this picture. As a result, V2P communication can be considered as a possible solution.
Technical Paper

Isometric Strength During Scaffold End Frame Disassembly

1999-05-18
1999-01-1907
Overexertion injuries comprise the largest category of nonfatal injuries among construction workers. These injuries typically occur when the biomechanical stresses associated with tasks such as lifting, carrying, pushing, etc., exceed the worker’s strength capacity. Two studies were conducted to measure the whole-body isometric strength capability of 56 construction workers. The first study examined the effect of four typical postures (2 symmetric lifts and 2 asymmetric lifts) associated with scaffold end frame disassembly. The effect of posture on isometric strength capability was significant; the strength capability ranged from 366 N to 676 N. The second study evaluated the effect of hand separation distance (46 cm, 86.4 cm, and 116.8 cm) and vertical hand placement (knuckle, elbow, and acromial heights) on isometric force during symmetric lifting postures. The interaction effect of hand separation distance - vertical hand placement on isometric strength capability was significant.
Technical Paper

Evaluation of Sensor Failure Detection, Identification and Accommodation (SFDIA) Performance Following Common-Mode Failures of Pitot Tubes

2014-09-16
2014-01-2164
Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used.
Journal Article

Pre-design Investigation of Resonant Frequency Effects on Gas Exchange Efficiencies of a One-kW Natural-Gas Linear Engine Alternator

2020-04-14
2020-01-0488
Performance of a natural gas two-stroke engine incorporated in a 1-kW free-piston oscillating Linear Engine Alternator (LEA) - a household electricity generator - was investigated under different resonant frequencies for pre-design phase purposes. To increase the robustness, power density, and thermal efficiencies, the crank mechanism in free-piston LEA is omitted and all moving parts of the generator operate at a fixed resonant frequency. Flexure springs are the main source of the LEA’s stiffness and the mass-spring dynamics dominates the engine’s speed. The trade-off between the engine’s performance, mass-spring system limits, and power and efficiency targets versus the LEA speed is very crucial and demands a careful investigation specifically at the concept design stages to find the optimum design parameters and operating conditions. CFD modeling was performed to analyze the effects of resonant frequency on the engine’s gas exchange behavior.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
X