Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Journal Article

Energy Conservation through Productivity Enhancement in Manufacturing Facilities

2008-04-14
2008-01-1164
The goal of this research work is to explore the energy savings that may result from productivity improvement recommendations. The productivity improvement recommendations on setup time reduction and finished goods inventory reduction were taken from Industrial Assessment Center (IAC-WVU) and Industries of the Future (IOF-WVU) databases at West Virginia University (WVU) and analyzed to evaluate the corresponding energy savings. A simulation analysis was performed to compare the peak energy demands (kW) in the present and proposed scenarios for the setup time reduction recommendation. It was found that productivity improvement recommendations can result in significant energy savings (2% to 4%).
Journal Article

High Temperature Sampling System for Real Time Measurement of Solid and Volatile Fractions of Exhaust Particulate Matter

2011-09-11
2011-24-0191
This paper discusses the design and qualification of a High Temperature Sampling System (HTSS), capable of stripping the volatile fraction from a sample flow stream in order to provide for quantification of total, solid and volatile particulate matter (PM) on a near real-time basis. The sampling system, which incorporates a heated diesel oxidation catalyst, is designed for temperatures up to 450°C. The design accounts for molecular diffusion of volatile compounds, solid particles diffusion and reaction kinetics inside one channel of the oxidation catalyst. An overall solid particle loss study in the sampling was performed, and numerical results were compared with experimental data gathered at the West Virginia University Engine and Emissions Research Laboratory (EERL) and West Virginia University's Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (THDVETL).
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

Development and Testing of a Second Generation ULEV Series HEV at West Virginia University

1998-02-23
980489
As a part of the 1996 FutureCar Challenge competition, West Virginia University converted a 1996 Chevrolet Lumina to a series hybrid electric vehicle. This technical report summarizes the modifications made to the vehicle during 1997, the second year of the competition, and details the present state of development of this second-generation hybrid electric vehicle. In particular, the vehicle's powertrain configuration, component selection, control strategy for all modes of operation, emissions control strategies, vehicle structure and design modifications, and suspension design and modifications are all detailed. Also discussed, are the operational use of this vehicle and its intended market. The projected performance of the vehicle, obtained from computer simulations, is discussed in the light of results obtained from testing during 1996 and 1997.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Technical Paper

Aerodynamic Drag Reduction of a Racing Motorcycle Through Vortex Generation

2003-09-16
2003-32-0037
For any high performance vehicle the aerodynamic properties are significant when attempting to optimize performance. For ground vehicles the major aerodynamic forces are drag and down-force. The focus of this research was to determine the feasibility of vortex generation as a method to reduce the aerodynamic drag of a racing class motorcycle. Wind tunnel tests were performed on a full-scale racing motorcycle in the Closed Loop Tunnel (CLT) at West Virginia University (WVU) and in Old Dominion University's (ODU) Langley Full Scale Tunnel (LFST) at various airspeeds. Counter-rotating vortices were generated using small commercially available vortex generators (VGs). The largest reduction in drag was 10%, which was measured in the WVU CLT. The LFST tests showed no measurable increase or decrease in drag. This led to the conclusion that the airspeed and test section blockage ratio influenced the optimum configuration and size of the vortex generators.
Technical Paper

Investigation of Plasma Exhaust Profile Manipulation Using Magnetic Fields

2017-09-19
2017-01-2048
In this research, the magnetoplasmadynamic (MPD) effects of applying a toroidal magnetic field around an ionized exhaust plume were investigated to manipulate the exhaust profile of the plasma jet under near vacuum conditions. Tests for this experiment were conducted using the West Virginia University (WVU) Hypersonic Arc Jet Wind Tunnel. A series of twelve N52 grade neodymium magnets were placed in different orientations around a steel toroid mounted around the arc jet’s exhaust plume. Four different magnet orientations were tested in this experiment. Two additional configurations were run as control tests without any imposed magnetic fields surrounding the plume. Each test was documented using a set of 12 photographs taken from a fixed position with respect to the flow. The photographic data was analyzed by comparing images of the exhaust plume taken 10, 20, and 30 seconds after the plasma jet was activated.
Technical Paper

Experimental Investigation into the Degradation of Borosilicate Glass Used in Dielectric Barrier Discharge Devices

2017-09-19
2017-01-2060
The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Quality Assurance of Exhaust Emissions Test Data Measured Using Portable Emissions Measurement System

2005-10-24
2005-01-3799
Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
Technical Paper

Isometric Strength During Scaffold End Frame Disassembly

1999-05-18
1999-01-1907
Overexertion injuries comprise the largest category of nonfatal injuries among construction workers. These injuries typically occur when the biomechanical stresses associated with tasks such as lifting, carrying, pushing, etc., exceed the worker’s strength capacity. Two studies were conducted to measure the whole-body isometric strength capability of 56 construction workers. The first study examined the effect of four typical postures (2 symmetric lifts and 2 asymmetric lifts) associated with scaffold end frame disassembly. The effect of posture on isometric strength capability was significant; the strength capability ranged from 366 N to 676 N. The second study evaluated the effect of hand separation distance (46 cm, 86.4 cm, and 116.8 cm) and vertical hand placement (knuckle, elbow, and acromial heights) on isometric force during symmetric lifting postures. The interaction effect of hand separation distance - vertical hand placement on isometric strength capability was significant.
Technical Paper

Design, Manufacturing, Testing, and Analysis of a Highly-Constrained Single-Use UAV Wing

2018-10-30
2018-01-1958
Unmanned aerial vehicle (UAV) design aspects are as broad as the missions they are used to support. In some cases, the UAV mission scope can impose design constraints that can be difficult to achieve. This paper describes recent work performed at West Virginia University (WVU) to support repeated flight testing of a single-use UAV platform with emphasis on the highly specialized wings required to help meet the overall airframe mass properties constrained by the project sponsor. The wings were fabricated using a molded polyurethane (PU) foam as the base material which was supported by several different types of rigid and flexible substructures, skins, and matrix-infused fiber elements. Different ratios of infused fiber mass to PU foam were tested and additional tungsten masses were added to the wings to achieve the correct total mass and mass distribution of the wings.
Journal Article

Innovative Structural Concepts for Lightweight Design of Heavy Vehicle Systems

2008-10-07
2008-01-2654
The objective of this paper is to devise innovative lightweight design concepts for heavy vehicle structures. A 1 to 4 prototype of a trailer was built to assess the feasibility of use of polymer composites and to have first hand experience with possible bonding methods to join the design parts. In the current trailer configurations, floor assembly constitutes 70% of the overall weight. The results indicated that sandwich technology with a lightweight core that adds flexural stiffness to the overall design provides a solution to decrease the weight of heavy vehicle systems.
X