Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

The Research of Solar Organic Rankine Evaporation Cycle System for Vehicle

2016-04-05
2016-01-1268
With the help of organic working medium absorbing the solar energy for steam electric power generation, green energy can be provided to automotive accessories so as to improve the vehicle energy efficiency. In the hot summer, the exhausted heat resulting from cars’ directly exposing to the sun can be used to cool and ventilate the passenger compartment. Considering the space occupied by the system in the combination of both practical features for solar heat source--low power and poor stability-- a compact evaporation structure was designed to enhance the solar utilization efficiency. In the research, the heat source of power and temperature variation range was determined by the available solar roof with photo-thermal conversion model. Then started from the ratio of exhausted heat utilization corresponding to evaporator’s characteristic parameter, the performance analysis was made in the different working conditions.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
X