Refine Your Search

Topic

Search Results

Technical Paper

Application of Wavelet Analysis in Truck Cab Vibration Signal Processing

2012-09-24
2012-01-2011
The basic principle of wavelet transform is presented and the method of wavelet theory is used in vibration signal analysis of vehicle in this paper. The vibration signals which generated in the locations such as cab floor, engine, transmission, band spring and frame under the usual work condition are measured by the vibration test system. The vibration signals are decomposed with the principle of wavelet decomposition at level six, and eigenvectors of signal energy are gained. According to the correlation coefficient of eigenvectors of signal energy distribution, two signals correlativity is determined. It could be an effective method that identificate the main vibration source.
Technical Paper

Vehicle Braking System Calculation and Simulation Software Platform

2012-09-24
2012-01-1895
The brake performance is one of the most important performances in the automotive active safety, and it is the main measure of automotive active safety. Thus, to develop a platform for the braking system is quite significant. Based on the object-oriented technology, the platform for braking system is developed by making use of Visual C++ 6.0 development tool. By using the VC++ development tool and doing secondary development on other softwares, the software possesses powerful features, such as brake plan selection, performance calculation, parametric modeling, finite element analysis and kinematics simulation, etc. An initial brake system can be designed, calculated and analyzed all in one. The living instance shows that the platform has friendly user interfaces, powerful functions and it can improve the precision and efficiency of brake design. The platform has been of great applied value and can also positively promote the design automation of vehicle's braking system.
Technical Paper

The Selection of Working Fluid Used in the Organic Rankine Cycle System for Hydraulic Retarder

2016-04-05
2016-01-0187
With the improvement of occupants’ awareness on the driving safety, hydraulic retarder applications increase quickly. The traditional hydraulic retarder, on the one hand, exhausts the waste heat of transmission oil by the engine cooling system; on the other hand, the engine power should be consumed to drive the water pump and the engine cooling fan for maintaining the normal operation of the auxiliary braking system. In this study, the Organic Rankine Cycle (ORC) instead of the traditional hydraulic retarder water-cooling system is applied to achieve the effective temperature control of the hydraulic retarder, while the waste heat of transmission oil could be recovered for saving vehicle energy consumption. The ORC fluid selection needs comprehensive consideration for the net power of the ORC and the optimal temperature range of the retarder transmission oil at both the inlet and outlet end, which is the key issue to ensure the stability and efficiency of the ORC system performance.
Technical Paper

Effects Analysis and Modeling of Different Transmission Running Conditions for Transmission Efficiency

2016-04-05
2016-01-1096
Several factors including internal factors which are related to the structure and components of transmission and external factors which are related to the running condition influence transmission efficiency (TE) collectively. Selected one manual transmission as the research object, this paper mainly analyzes factors including gears and bearings power loss through theoretical calculation and the external factors, such as gears, temperature and torque. Firstly, with a methodology, the overall efficiency of the manual transmission is calculated based on factors. Then, this paper discusses efficiency through external factor. This transmission is experimented on transmission test bench. On the bench, the driving motor (DM) simulates the power input of engine and the load motor (LM) simulates the whole resistance of vehicle. The mechanical transmission is operating in different speeds, torques and work temperature, thus the corresponding data are obtained.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Pavement Characteristic Judgment Method Based on Vehicle Speed Change

2018-04-03
2018-01-1088
The road feature has an important influence on the safe speed of the unmanned vehicle and the safe space between two vehicles. Real-time access to the features of the road ahead of time and timely adjustment of engine torque are significant to unmanned driving. Most of the researches nowadays make full use of vehicle sensor technology and environment perception technology. Vehicle sensor is widely used to collect the features of the road. While in this paper, a new type of road feature extraction is proposed based on vehicle speed change. Under the premise of less sensor installed, vehicle speed-time data series is collected. The pavement parameters can be estimated with vehicle speed. Based on the vehicle dynamics, this paper studies the relationship between vehicle speed and rolling resistance. Different road features have different influences on road friction resistance.
Technical Paper

Modeling and Simulation Research of Dual Clutch Transmission Based On Fuzzy Control

2007-08-05
2007-01-3754
Dual-Clutch-Transmission (DCT) is one kind new automatic transmission which has double clutch structure. The most important unit of DCT is Transmission-Control-Module (TCM).In the development process of TCM, simulation is an important research tools. We have analyzed the DCT principle of work, established its mathematical model, created the charge and discharge oil models of typical wet dual clutch transmission, established the control logic to unify and separate double clutch in turn, and also designed out the shift control using fuzzy control using MATLAB/Simulink software. Utilizing engine model, driver model, the DCT model, the TCM model, the vehicle model, established the vehicle simulation model, and implemented simulation; Result indicated that, the established model can correctly reflect the torque and speed change when shifted gears and can correctly realize the automatic shift gears.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

The Experimental Study and Performance Analysis of Air-Friction Reduction System for Hydraulic Retarder

2015-04-14
2015-01-1127
The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
Technical Paper

Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms

2008-10-07
2008-01-2681
Semi-active suspension has been widely applied in commercial vehicle suspension in order to get good riding comfortableness. Fuzzy logic control (FLC) has been widely applied in the field of kinetic control because control rule of FLC is easy to understand. But the gain of fuzzy rules and adjustment of membership functions usually depend on experts' experiences and repeated experiments, thus the fuzzy rules and membership functions has strong subjectivity, also are easily affected by environment of experiments, so the main problem of fuzzy logic controller design is selection and optimization of fuzzy rules and membership functions. Genetic Algorithms (GA) is the algorithm that searches the optimal solution through simulating natural evolutionary process and is one of the evolution algorithms which have most extensive impact.
Technical Paper

Experimental Study of Hydraulic Retarder Waste Heat Recovery Based on the Organic Rankine Cycle

2016-09-27
2016-01-8079
The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established. Then through theoretical calculations, components' structural parameters of the ORC are determined.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

The Driving Behavior Data Acquisition and Identification Based on Vehicle Bus

2016-09-14
2016-01-1888
This research is based on the Controller Area Network (CAN) bus, and briefly analyzed its communication protocol with reference to the layered model of Open System Interconnect Reference Model (OSI). Subsequently, a data acquisition system was designed and developed including a Vehicle Communication Interface (VCI) and a laptop. After the overall architecture was built, the communication mechanism of the VCI was studied. Furthermore, the lap top app was built using the layered design followed by the implementation of a scheme for data collection and experimentation involving the test driving of a real car on road. Finally, the driving style was identified by means of fuzzy reasoning and solving ambiguity based on fuzzy theory; via training the acceleration sample and forecast using the excellent learning and generalization ability of Support Vector Machine (SVM) for high-dimensional, finite samples.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

Research on Torsional Characteristic of Separate Frame Construction for a Light Off-Road Vehicle

2015-03-10
2015-01-0014
A key problem of designing a light off-road vehicle with separate frame construction is to improve its torsional characteristic, which has a significant influence on the performance of the vehicle. Inevitably, a certain distortion of the body would be produced by the vibration and impact passing from the road. In present research, an analysis model of light off-road vehicle is established based on the theories and methods of finite element (FEM). The static stiffness of the body is simulated and the deformation of openings on the body, mainly the windows and the doors of the vehicle is studied. On the working conditions of torsion and braking combination, torsion and cornering combination, diagonal dangling, ultimate torsion of unilateral wheels and diagonal wheels, the static strength of separate frame construction is studied as well. The stress concentration regions are obtained according to the results of simulation.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Journal Article

A Novel Indirect Health Indicator Extraction Based on Charging Data for Lithium-Ion Batteries Remaining Useful Life Prognostics

2017-06-17
2017-01-9078
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
Journal Article

Cracking Failure Analysis and Optimization on Exhaust Manifold of Engine with CFD-FEA Coupling

2014-04-01
2014-01-1710
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well.
X