Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
Technical Paper

Intersection Traffic Safety Evaluation Using Potential Energy Filed Method

2023-04-11
2023-01-0855
The intersection is recognized as the most dangerous area because of the restricted road structures and indeterminate traffic regulations. Therefore, according to the Vehicle-to-everything (V2X) communication, Intelligent Transportation Systems (ITS), and Digital Twin data, we present a potential energy field method to establish the general characteristics of intersection traffic safety, evaluate the safety situation of intersection and assist intersection traffic participants in passing through the intersection safer and more efficient. The resulting potential energy field method is established by the contour line of traffic participants' potential energy, which is constructed as a superposition of disparate energies, such as boundary potential energy, body potential energy, and velocity potential energy. The intersection traffic safety is evaluated by the potential energy field characteristic of simultaneous intersection traffic participants.
Technical Paper

Study on Local Stress Variable Strength Design Effect of B-Pillar Structure

2023-04-11
2023-01-0082
In this paper, the principles, advantages and disadvantages of the main technology of variable strength design of automobile B-pillar Based on the finite element simulation technology, the local stress variable strength design effect of Automobile B-pillar structure is simulated, compared and evaluated. The simulation results show that with the same mechanical properties, the overall lightweight degree of B-pillar structure with variable strength design can be reduced by about 8.9%. With the expansion of the strengthening area of variable strength design of parts, the degree of lightweight of parts can be further improved. It can be seen that the local stress variable strength design method provides a new technical option for the lightweight design of automobile parts.
Technical Paper

Energy Absorption Behavior and Application of Thin-walled Box Structure with Higher Strength in Ridgelines

2016-04-05
2016-01-0398
To overcome some drawbacks of using AHSS (Advanced High Strength Steel) in vehicle weight reduction, like brittleness, spot weld HAZ (Heat Affected Zone) softening and high cost, a new ridgeline strengthening technology was introduced and applied to the thin-walled structure in this paper. The energy absorption mechanism of thin-walled box structure with selective strengthened ridgelines under axial compressing load was discussed in first section. After this, the formulas of mean crushing force and corresponding energy absorption for square tube were theoretically discussed. To demonstrate prediction capabilities of formulas, a set of FE simulations of square tubes were conducted. Simulation results show that energy absorption capacity of square tube under quasi-static axial crushing load is dramatically improved by selectively strengthening their ridgelines.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

Analysis of Steering Model for Emergency Lane Change Based on the China Naturalistic Driving Data

2017-03-28
2017-01-1399
A driver steering model for emergency lane change based on the China naturalistic driving data is proposed in this paper. The steering characteristic of three phases is analyzed. Using the steering primitive fitting by Gaussian function, the steering behaviors in collision avoidance and lateral movement phases can be described, and the stabilization steering principle of yaw rate null is found. Based on the steering characteristic, the near and far aim point used in steering phases is analyzed. Using the near and far aim point correction model, a driver steering model for emergency lane change is established. The research results show that the driver emergency steering model proposed in this paper performs well when explaining realistic steering behavior, and this model can be used in developing the ADAS system.
X