Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications

Electric drives are growing in importance in automotive applications, especially in hybrid electric vehicles (HEV) and in the vehicle dynamics area (steering systems, etc.). The challenges of real-time hardware-in-the-loop (HIL) simulation and testing of electric drives are addressed in this paper. In general, three different interface levels between the electric drive and the hardware-inthe-loop system can be distinguished: the signal level (1), the electrical level (2) and the mechanical level (3). These interface levels, as well as modeling and I/O-related aspects of electric drives and power electronics devices, are discussed in detail in the paper. Finally, different solutions based on dSPACE simulator technology are presented, for both hybrid vehicle and steering applications.
Technical Paper

Hardware-in-the-Loop Testing of Engine Control Units - A Technical Survey

Due to tougher legislation on exhaust emissions reduction and the consumer demand for more power and mobility and less fuel consumption, the functionality in today's engine management systems continues to grow. The electronic engine control units (ECUs) have to perform more control tasks using new sensors and actuators, along with the corresponding self-diagnostics (OBD, on-board diagnosis). All this leads to continuously increasing demands on automated hardware-in-the-loop (HIL) test systems. HIL technology has advanced in parallel to the ECUs, and is today an indispensable tool for developing automotive electronics. This paper therefore aims to provide a comprehensive and state-of-the-art survey of HIL test systems for engine controllers. First of all, a brief introduction to the ECU's functionality is given.
Technical Paper

Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers – A Technical Survey

Hardware-in-the-loop (HIL) test benches are indispensable for the development of modern vehicle dynamics controllers (VDCs). They can be regarded as a standard methodology today, because of the extremely safety-critical nature of the multi-sensor and multi-actuator systems used in vehicle dynamics control. The required high quality standards can only be ensured by systematic testing within a virtual HIL environment before going into a real car. This paper aims to provide a condensed technical over-view of state-of-the-art HIL test systems for VDCs, which are currently widely used in passenger cars, in the form of ABS and TCS, as well as ESP, or integrated chassis control, which is just coming onto the market. First, a short introduction to the basic functionality of these types of ECUs is given, and the reasons why HIL testing is necessary and especially useful for VDCs are discussed.