Refine Your Search

Topic

Author

Search Results

Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Journal Article

Lab-Based Testing of ADAS Applications for Commercial Vehicles

2015-09-29
2015-01-2840
Advanced driver assistance systems (ADAS) are becoming increasingly important for today's commercial vehicles. It is therefore crucial that different ADAS functionalities interact seamlessly with existing electronic control unit (ECU) networks. For example, autonomous emergency braking (AEB) systems directly influence the brake ECU and engine control. It has already become impossible to reliably validate this growing interconnectedness of control interventions in vehicle behavior with prototype vehicles alone. The relevant tests must be brought into the lab at an earlier development stage to evaluate ECU interaction automatically. This paper presents an approach for using hardware-in-the-loop (HIL) simulation to validate ECU networks for extremely diverse ADAS scenarios, while taking into account real sensor data. In a laboratory environment, the sensor systems based on radars, cameras, and maps are stimulated realistically with a combination of simulation and animation.
Journal Article

Optimizing the Benefit of Virtual Testing with a Process-Oriented Approach

2017-09-19
2017-01-2114
In the aerospace industry, methods for virtual testing cover an increasing range of test executions carried out during the development and test process of avionics systems. Over the last years, most companies have focused on questions regarding the evaluation and implementation of methods for virtual testing. However, it has become more and more important to seamlessly integrate virtual testing into the overall development process. For instance, a company’s test strategy might stipulate a combination of different methods, such as SIL and HIL simulation, in order to benefit from the advantages of both in the same test process. In this case, efforts concentrate on the optimization of the overall process, from test specification to test execution, as well as the test result evaluation and its alignment with methods for virtual testing.
Journal Article

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-09-13
2011-01-2264
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Journal Article

Communication Infrastructure for Hybrid Test Systems - Demands, Options, and Current Discussions

2016-09-20
2016-01-2051
The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
Technical Paper

Behavior Modeling Tools in an Architecture-Driven Development Process - From Function Models to AUTOSAR

2007-04-16
2007-01-0507
This paper will first introduce and classify the basic principles of architecture-driven software development and will briefly sketch the presumed development process. This background information is then used to explain extensions which enable current behavior modeling and code generation tools to operate as software component generators. The generation of AUTOSAR software components using dSPACE's production code generator TargetLink is described as an example.
Technical Paper

Automated Real-Time Testing of Electronic Control Units

2007-04-16
2007-01-0504
Today, hardware-in-the-loop (HIL) simulation is common practice as a testing methodology for electronic control units (ECUs). An essential criterion for the efficiency of an HIL system is the availability of powerful test automation having access to all of its hardware and software components (including I/O channels, failure insertion units, bus communication controllers and diagnostic interfaces). The growing complexity of vehicle embedded systems, which are interconnected by bus systems (like CAN, LIN or FlexRay), result in hundreds or even thousands of tests that have to be done to ensure the correct system functionality. This is best achieved by automated testing. Automated testing usually is performed by executing tests on a standard PC, which is interconnected to the HIL system. However, higher demands regarding timing precision are hard to accomplish. As an example, ECU interaction has to be captured and responded to in the range of milliseconds.
Technical Paper

Hardware-in-the-Loop Testing of Engine Control Units - A Technical Survey

2007-04-16
2007-01-0500
Due to tougher legislation on exhaust emissions reduction and the consumer demand for more power and mobility and less fuel consumption, the functionality in today's engine management systems continues to grow. The electronic engine control units (ECUs) have to perform more control tasks using new sensors and actuators, along with the corresponding self-diagnostics (OBD, on-board diagnosis). All this leads to continuously increasing demands on automated hardware-in-the-loop (HIL) test systems. HIL technology has advanced in parallel to the ECUs, and is today an indispensable tool for developing automotive electronics. This paper therefore aims to provide a comprehensive and state-of-the-art survey of HIL test systems for engine controllers. First of all, a brief introduction to the ECU's functionality is given.
Technical Paper

Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications

2007-04-16
2007-01-0498
Electric drives are growing in importance in automotive applications, especially in hybrid electric vehicles (HEV) and in the vehicle dynamics area (steering systems, etc.). The challenges of real-time hardware-in-the-loop (HIL) simulation and testing of electric drives are addressed in this paper. In general, three different interface levels between the electric drive and the hardware-inthe-loop system can be distinguished: the signal level (1), the electrical level (2) and the mechanical level (3). These interface levels, as well as modeling and I/O-related aspects of electric drives and power electronics devices, are discussed in detail in the paper. Finally, different solutions based on dSPACE simulator technology are presented, for both hybrid vehicle and steering applications.
Technical Paper

Simulating and Testing In-Vehicle Networks by Hardware-in-the-Loop Simulation

2008-04-14
2008-01-1220
Validating control units with hardware-in-the-loop (HIL) simulators is an established method for quality enhancements in automotive software. It is primarily used for testing applications, but in view of increased networking between electronic control units, it can also be used for testing communication scenarios. The testing of electronic control unit (ECU) communication often includes only positive testing. Simple communication nodes are used for this, and communication analyzers are used for verifying communication up to the physical level. However, it is not only an ECU's positive communication behavior that has to be tested, but also its correct behavior in the event of communication errors. In HIL communication scenarios, it is not only possible to emulate the missing bus nodes (restbus simulation) with a link to real-time signals; correct ECU behavior in the event of communication errors can also be tested.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Key Factors for Successful Integration of Automatic Code Generation in Series Production Development

2009-04-20
2009-01-0154
Model-based development and autocoding have become common practice in the automotive industry over the past few years. The industry is using these methods to tackle a situation in which complexity is constantly growing and development times are constantly decreasing, while the safety requirements for the software stay the same or even increase. The debate is no longer whether these methods are useful, but rather on the conditions for achieving optimum results with them. From the experiences made during the last decade this paper shows some of the key factors helping to achieve success when introducing or extending the deployment of automatic code generation in a model-based design process.
Technical Paper

Using Software Architecture Models in Automotive Development Processes

2008-10-07
2008-01-2664
Over the last few years the introduction of explicit system and software architecture models (e.g. AUTOSAR models) has led to changes in the automotive development process. The ability to simulate these models on a PC will be decisive for the acceptance of such approaches. This would support the early verification of distributed ECU and software systems and could therefore lead to cost savings. This paper describes an implementation of such an approach which fits into current development processes.
Technical Paper

Combining Automotive System and Function Models to Support Code Generation and Early System Verification

2008-10-20
2008-21-0042
Function models have a well-established position in automotive software development. Formal system models, on the other hand, are rare. This article describes the various aspects of function and system models, focusing mainly on AUTOSAR-compatible models. It also depicts the challenges for future overall models that combine the function models and the system model, and the resulting benefits, such as early system verification via PC-based simulations.
Technical Paper

Advantages and Challenges of Closed-Loop HIL Testing for Commercial and Off-Highway Vehicles

2009-10-06
2009-01-2841
Hardware-in-the-loop (HIL) testing is used by commercial vehicle original equipment manufacturers (OEMs) in several fields of electronics development. HIL tests are a part of the standard development process for engine and machine control systems. For electronic control units (ECUs), not only the HIL test of the hardware but also the controller software validation is very important. For hardware diagnostics validation, a dynamic simulation of the real system could be omitted and an open-loop test of the controller is sufficient in most cases. For most controller software validation including OBD (on-board diagnosis) tests, detailed but real-time capable models have to be used. This article describes the needs and challenges of models in hardware-in-the-loop (HIL) based testing, taking into account the wide range of commercial and off-highway vehicles.
Technical Paper

Embedded Software Tools Enable Hybrid Vehicle Architecture Design and Optimization

2010-10-19
2010-01-2308
This presentation focuses on several examples of partnerships between tool suppliers and embedded software developers in which state-of-the-art tools are used to optimize a variety of electric and hybrid vehicle architectures. Projects with Automotive OEMs, Tier One Suppliers as well as with academic institutions will be described. Due to the growing complexity in multiple electronic control units (“ECUs”) inter-communicating over numerous network bus systems, combined with the challenge of controlling and maintaining charges for electric motors, vehicle development would be impossible without use of increasingly sophisticated tools. Hybrid drive trains are much more complex than conventional ones, they have at least one degree of freedom more.
Technical Paper

A Model-Based Reference Workflow for the Development of Safety-Related Software

2010-10-19
2010-01-2338
Model-based software development is increasingly being used to develop software for electronic control units (ECUs). When developing safety-related software, compared to non-safety-related software development, additional requirements specified by relevant safety-standards have to be met. Meeting these requirements should also be considered to be best practices for non-safety-related software. This paper introduces a model-based reference workflow for the development of safety-related software conforming to relevant safety-standards such as IEC 61508 and ISO 26262. The reference workflow discusses requirements traceability aspects, software architecture considerations that help to support modular development and ease the verification of model parts and the code generated from those model parts, and the selection and enforcement of modeling and coding guidelines.
Technical Paper

Development of Safety-Critical Software Using Automatic Code Generation

2004-03-08
2004-01-0708
In future cars, mechanical and hydraulic components will be replaced by new electronic systems (x-by-wire). A failure of such a system constitutes a safety hazard for the passengers as well as for the environment of the car. Thus electronics and in particular software are taking over more responsibility and safety-critical tasks. To minimize the risk of failure in such systems safety standards are applied for their development. The safety standard IEC 61508 has been established for automotive electronic systems. At the same time, automatic code generation is increasingly being used for automotive software development. This is to cope with today's increasing requirements concerning cost reduction and time needed for ECU development combined with growing complexity. However, automatic code generation is hardly ever used today for the development of safety-critical systems.
Technical Paper

Model-based Testing of Embedded Automotive Software Using Mtest

2004-03-08
2004-01-1593
Permanently increasing software complexity of today's electronic control units (ECUs) makes testing a central and significant task within embedded software development. While new software functions are still being developed or optimized, other functions already undergo certain tests, mostly on module level but also on system and integration level. Testing must be done as early as possible within the automotive development process. Typically ECU software developers test new function modules by stimulating the code with test data and capturing the modules' output behavior to compare it with reference data. This paper presents a new and systematic way of testing embedded software for automotive electronics, called MTest. MTest combines the classical module test with model-based development. The central element of MTest is the classification-tree method, which has originally been developed by the DaimlerChrysler research department.
Technical Paper

A New Calibration System for ECU Development

2003-03-03
2003-01-0131
Automotive manufacturers and suppliers of electronic control units (ECUs) will be challenged more and more in the future to reduce costs and the time needed for ECU development. At the same time, increasing requirements concerning exhaust gas emissions, drivability, onboard diagnostics and fuel consumption have led to the growing complexity of modern engines and the associated management systems. As a result, the number and complexity of control parameters and look-up tables in the ECU software is increasing dramatically. Thus, in powertrain applications especially, calibration development has become a time-consuming and cost-intensive stage in the overall ECU development process. This paper describes the current situation in calibration development and shows how the new dSPACE Calibration System will face this situation. It provides an overview of the main benefits of the tool, which has been designed in close cooperation with calibration engineers.
X