Refine Your Search

Topic

Author

Search Results

Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Hardware-in-the-Loop Testing in the Context of ISO 26262

2012-04-16
2012-01-0035
Hardware-in-the-loop (HIL) simulation is now a standard component in the vehicle development process as a method for testing electronic control unit (ECU) software. HIL simulation is used for all aspects of development, naturally including safety-relevant functions and systems. This applies to all test tasks (from function testing to release tests, testing a single ECU or an ECU network, and so on) and also to different vehicle domains: The drivetrain, vehicle dynamics, driver assistance systems, interior/comfort systems and infotainment are all tested by HIL simulation. At the same time, modern vehicles feature more and more safety-related systems such as Adaptive Cruise Control, Electronic Stability Program, Power Assisted Steering, and Integrated Chassis Management.
Technical Paper

Advantages and Challenges of Closed-Loop HIL Testing for Commercial and Off-Highway Vehicles

2009-10-06
2009-01-2841
Hardware-in-the-loop (HIL) testing is used by commercial vehicle original equipment manufacturers (OEMs) in several fields of electronics development. HIL tests are a part of the standard development process for engine and machine control systems. For electronic control units (ECUs), not only the HIL test of the hardware but also the controller software validation is very important. For hardware diagnostics validation, a dynamic simulation of the real system could be omitted and an open-loop test of the controller is sufficient in most cases. For most controller software validation including OBD (on-board diagnosis) tests, detailed but real-time capable models have to be used. This article describes the needs and challenges of models in hardware-in-the-loop (HIL) based testing, taking into account the wide range of commercial and off-highway vehicles.
Technical Paper

Advancements in Hardware-in-the-Loop Technology in Support of Complex Integration Testing of Embedded System Software

2011-04-12
2011-01-0443
Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
Technical Paper

Hybrid Drivetrain Simulation for Hardware-in-the-Loop Applications

2011-04-12
2011-01-0455
This paper describes challenges and possible solution of hybrid electrical vehicles test systems with a special focus on hardware-in-the-loop (HIL) test bench. The degree of novelty of this work can be seen in the fact that development and test of ECU for hybrid electrical powertrains can move more and more from mechanical test benches with real automotive components to HIL test systems. The challenging task in terms of electrical interface between an electric motor ECU and an HIL system and necessary real-time capable simulation models for electric machines have been investigated and partly solved. Even cell balancing strategies performed by battery management systems (BMU) can be developed and tested using HIL technology with battery simulation models and a precise cell voltage simulation on electrical level.
Technical Paper

Key Factors for Successful Integration of Automatic Code Generation in Series Production Development

2009-04-20
2009-01-0154
Model-based development and autocoding have become common practice in the automotive industry over the past few years. The industry is using these methods to tackle a situation in which complexity is constantly growing and development times are constantly decreasing, while the safety requirements for the software stay the same or even increase. The debate is no longer whether these methods are useful, but rather on the conditions for achieving optimum results with them. From the experiences made during the last decade this paper shows some of the key factors helping to achieve success when introducing or extending the deployment of automatic code generation in a model-based design process.
Technical Paper

A Hardware-in-the-Loop Test Bench for the Validation of Complex ECU Networks

2002-03-04
2002-01-0801
Due to the continuously increasing number of electronic control units (ECUs) in modern cars, and their growing complexity, automated tests not only of single ECUs but also of interconnected ECUs have become an important step in the development of automotive electronics. These tasks require new test systems. This paper describes the problems engineers face when developing and testing today's car electronics, as well as a high-end hardware-in-the-loop (HIL) tool set (hardware, software, models) applied to the testing of four networked ECUs for engine management, vehicle dynamics control, automatic transmission, and an active suspension system. The tool set comprises general features needed for HIL tests, like automated code generation for real-time models using MATLAB/Simulink and a comprehensive set of dedicated hardware (processor and I/O hardware).
Technical Paper

Advances in Rapid Control Prototyping - Results of a Pilot Project for Engine Control -

2005-04-11
2005-01-1350
The technological development in the field of automotive electronics is proceeding at almost break-neck speed. The functions being developed and integrated into cars are growing in complexity and volume. With the increasing number and variety of sensors and actuators, electronics have to handle a greater amount of data, and the acquisition and generation of I/O signals is also growing in complexity, for example, in engine management applications. Moreover, intelligent and complex algorithms need to be processed in a minimum of time. This all intensifies the need for Rapid Control Prototyping (RCP), a proven method of decisively speeding up the model-based software development process of automotive electronic control units (ECUs) [1],[2]. All these demanding tasks, including connecting sensors and actuators to the RCP system, need to be performed within a standard prototyping environment.
Technical Paper

How to Do Hardware-in-the-Loop Simulation Right

2005-04-11
2005-01-1657
Not only is the number of electronic control units (ECUs) in modern vehicles constantly increasing, the software of the ECUs is also becoming more complex. Both make testing a central task within the development of automotive electronics. Testing ECUs in real vehicles is time-consuming and costly, and comes very late in the automotive development process. It is therefore increasingly being replaced by laboratory tests using hardware-in-the-loop (HIL) simulation. While new software functions are still being developed or optimized, other functions are already undergoing certain tests, mostly on module level but also on system and integration level. To achieve the highest quality, testing must be done as early as possible within the development process. This paper describes the various test phases during the development of automotive electronics (from single function testing to network testing of all the ECUs of a vehicle).
Technical Paper

Hardware-in-the-Loop Testing of Networked Electronics at Ford

2005-04-11
2005-01-1658
The number of electrical and electronic components in modern vehicles is constantly growing. Increasingly, functionalities are being distributed across several electronic control units (ECUs). While suppliers themselves are responsible for ensuring that individual ECUs function properly, only the OEM can test distributed functions. Moreover, with the volume of testing steadily growing, automated sequences are absolutely essential. To test electronic networks in the vehicle, Ford Europe is using platform-based hardware-in-the-loop simulation with integrated failure insertion. The company is setting up a uniform, project-independent procedure, from standardized test definition to automated test sequences on a virtual vehicle, right through to structured evaluation.
Technical Paper

Dynamic Two-Zone NOx Emission Simulation in Diesel Engine Hardware-in-the-Loop Applications

2016-09-27
2016-01-8083
Increasing diagnosis capabilities in modern engine electronic control units (ECUs), especially in the exhaust path, in terms of emission and engine aftertreatment control utilize on-board NOx prediction models. Nowadays it is an established approach at hardware-in-theloop (HIL) test benches to replicate the engine's steady-state NOx emissions on the basis of stationary engine data. However, this method might be unsuitable for internal ECU plausibility checks and ECU test conditions based on dynamic engine operations. Examples of proven methods for modeling the engine behavior in HIL system applications are so-called mean value engine models (MVEMs) and crank-angle-synchronous (in-cylinder) models. Of these two, only the in-cylinder model replicates the engine’s inner combustion process at each time step and can therefore be used for chemical-based emission simulation, because the formation of the relevant gas species is caused by the inner combustion states.
Technical Paper

Framework for Modelling and Simulation of Multi-Physics Aircraft Systems with Distributed Electronic Controllers

2017-09-19
2017-01-2115
Multi-physics interactions between structural, electrical, thermal, or hydraulic components and the high level of system integration, characteristic of new aircraft designs, is increasing the complexity of both design and verification processes. Therefore the availability of tools, supporting integrated modelling, simulation, optimization and testing across all stages of aircraft design remains a critical challenge. This paper presents some results of the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). It is a collaborative task being developed under the European Union Clean Sky 2 Program, which is a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The first levels of integration of different models and tools proposed in the MISSION framework will be presented, along with simulation results.
Technical Paper

Monitoring and Control of Hybrid Test Systems

2017-09-19
2017-01-2119
Hybrid test systems are gaining more and more significance in the aerospace industry. At the heart of these systems is a standardized communication infrastructure. There are many challenges when designing the communication infrastructure. For example, it requires very specific knowledge to boot a hybrid system, manage its configuration process, and start and stop the execution of applications, such as simulations, panels or recorders. Likewise, when testers use a heterogeneous test environment, they cannot commit themselves too much to every single test means and its special characteristics. Nevertheless, testers must always be able to monitor and control every test system. This means, they must be able to determine the current overall system status and the current status of its components and parts. Examples for this are hardware components, such as real-time processors and I/O boards, as well as software applications, such as real-time simulations models on the test system.
Technical Paper

Automatic Generation of Production Quality Code for ECUs

1999-03-01
1999-01-1168
This paper describes a new production code generator that meets both the requirements of code developers for efficient and reliable production code, as well as the desire of system engineers to establish a control design process based on simulation models that double as executable specifications for the ECU software. The production code generator supports automatic scaling, generates optimized fixed-point C code for microcontrollers like the Motorola 683xx, Siemens C16x, and Hitachi SH-2, and produces ASAP2 [1] calibration information. Benchmark results show that the autogenerated code can match or even exceed the efficiency of typical handwritten production code. Code quality is assured by design and by systematic, automatic, and extremely comprehensive test procedures.
Journal Article

Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation

2017-03-28
2017-01-0219
The complexity of automobile powertrains grows continuously. At the same time, development time and budget are limited. Shifting development tasks to earlier phases (frontloading) increases the efficiency by utilizing test benches instead of prototype vehicles (road-to-rig approach). Early system verification of powertrain components requires a closed-loop coupling to real-time simulation models, comparable to hardware-in-the-loop testing (HiL). The international research project Advanced Co-Simulation Open System Architecture (ACOSAR) has the goal to develop a non-proprietary communication architecture between real-time and non-real-time systems in order to speed up the commissioning process and to decrease the monetary effort for testing and validation. One major outcome will be a generic interface for coupling different simulation tools and real-time systems (e.g. HiL simulators or test benches).
Journal Article

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-09-13
2011-01-2264
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Journal Article

Optimizing the Benefit of Virtual Testing with a Process-Oriented Approach

2017-09-19
2017-01-2114
In the aerospace industry, methods for virtual testing cover an increasing range of test executions carried out during the development and test process of avionics systems. Over the last years, most companies have focused on questions regarding the evaluation and implementation of methods for virtual testing. However, it has become more and more important to seamlessly integrate virtual testing into the overall development process. For instance, a company’s test strategy might stipulate a combination of different methods, such as SIL and HIL simulation, in order to benefit from the advantages of both in the same test process. In this case, efforts concentrate on the optimization of the overall process, from test specification to test execution, as well as the test result evaluation and its alignment with methods for virtual testing.
Technical Paper

Testing of Real-Time Criteria in ISO 26262 Related Projects - Maximizing Productivity Using a Certified COTS Test Automation Tool

2016-04-05
2016-01-0139
Increasing productivity along the development and verification process of safety-related projects is an important aspect in today’s technological developments, which need to be ever more efficient. The increase of productivity can be achieved by improving the usability of software tools and decreasing the effort of qualifying the software tool for a safety-related project. For safety-critical systems, the output of software tools has to be verified in order to ensure the tools’ suitability for safety-relevant applications. Verification is particularly important for test automation tools that are used to run hardware-in-the-loop (HIL) tests of safety-related software automatically 24/7. This qualification of software tools requires advanced knowledge and effort. This problem can be solved if a tool is suitable for developing safety-related software. This paper explains how this can be achieved for a COTS test automation tool.
Journal Article

Lab-Based Testing of ADAS Applications for Commercial Vehicles

2015-09-29
2015-01-2840
Advanced driver assistance systems (ADAS) are becoming increasingly important for today's commercial vehicles. It is therefore crucial that different ADAS functionalities interact seamlessly with existing electronic control unit (ECU) networks. For example, autonomous emergency braking (AEB) systems directly influence the brake ECU and engine control. It has already become impossible to reliably validate this growing interconnectedness of control interventions in vehicle behavior with prototype vehicles alone. The relevant tests must be brought into the lab at an earlier development stage to evaluate ECU interaction automatically. This paper presents an approach for using hardware-in-the-loop (HIL) simulation to validate ECU networks for extremely diverse ADAS scenarios, while taking into account real sensor data. In a laboratory environment, the sensor systems based on radars, cameras, and maps are stimulated realistically with a combination of simulation and animation.
X