Refine Your Search

Topic

Author

Search Results

Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Data Management in the Model-Based Design Paradigm

2013-09-24
2013-01-2398
The Model-Based Development (MBD) process has been the key enabler of technical advancement. MBD helps manage complexity, while making product development faster by bringing clarity and transparency to the entire product development process, specifically software components. Developing software using MBD has required extensive, sophisticated toolchains, like the ones provided by dSPACE, that allow for efficient rapid controls prototyping, automatic code generation, and advanced validation and verification techniques with hardware-in-the-loop (HIL) test systems. MBD is an efficient iterative process that allows engineers to improve quality and deliver on demanding needs of product variants in the current competitive environment. However, the MBD process described commonly using the ‘V-Cycle’ diagram leads to the generation of large volumes of data artifacts and work products. The iterative process, variants and versions of these artifacts lead to even larger amounts of data.
Technical Paper

Virtual Validation - A New Paradigm in Controls Engineering

2013-09-24
2013-01-2404
It is not news anymore when somebody talks about increasing software content in today's vehicles, transportation systems and machinery. The software content and complexity has grown so tremendously and rapidly that even the most advanced product/software development techniques leave more to desire in view of evolving product life-cycles, feature content and need for development efficiency. Model-Based Design (MBD) techniques and V-Cycle based development processes address the significant need for managing complexity, and to some extent, efficiency in product development. Further efficiency in the development process can be achieved by enabling virtual validation of software components. The virtual validation environment for software not only has the ability to run the software component as a standalone unit for performance validation, but is also extended to the validation of the performance of the entire embedded software of an ECU, multiple ECUs and the entire system.
Technical Paper

Embedded Software Tools Enable Hybrid Vehicle Architecture Design and Optimization

2010-10-19
2010-01-2308
This presentation focuses on several examples of partnerships between tool suppliers and embedded software developers in which state-of-the-art tools are used to optimize a variety of electric and hybrid vehicle architectures. Projects with Automotive OEMs, Tier One Suppliers as well as with academic institutions will be described. Due to the growing complexity in multiple electronic control units (“ECUs”) inter-communicating over numerous network bus systems, combined with the challenge of controlling and maintaining charges for electric motors, vehicle development would be impossible without use of increasingly sophisticated tools. Hybrid drive trains are much more complex than conventional ones, they have at least one degree of freedom more.
Technical Paper

Simulation and Test Systems for Validation of Electric Drive and Battery Management Systems

2012-10-22
2012-01-2144
Currently, hybrid and electric drive control systems are being developed for many types of platforms in the aerospace, automotive, and commercial vehicle industries. These systems also entail the use of Battery Management Systems (BMS) to handle their demanding power needs. However, the development of these technologies brings increased system complexity, evident in the platform variants and even more so in the control algorithms of various electronic control units (ECUs). There is also a greater need to handle system-level control strategies, via communication networks and command software. This increased system complexity poses new challenges for software design and ECU system validation, mandating the need for simulation tools that can easily handle the inherent system complexity, while providing cost-effective, industry-proven verification tools and processes.
Technical Paper

DSP-Based Automotive Sensor Signal Generation for Hardware-in-the-Loop Simulation

1994-03-01
940185
Hardware-in-the-Loop Simulation is a technology where the actual vehicles, engines or other components are replaced by a real-time simulation in a simulation computer, based on a mathematical model. That simulation reads ECU (Electronic Control Unit) output signals which would normally go to actuators. On the other hand the simulation must output the sensor signals which make the ECU ‘think’ it controls a real system. Generating these signals can be very difficult. Signals may be complex, depend on on-line computed variables, and be required to be output at high timing resolution. This paper describes the problems and presents a solution which employs high-performance Digital Signal Processors (DSP) to generate such signals on-line by Direct-Digital-Synthesis (DDS).
Journal Article

ESC Performance of Aftermarket Modified Vehicles: Testing, Simulation, HIL, and the Need for Collaboration

2010-10-19
2010-01-2342
The enactment of FMVSS 126 requires specific safety performance in vehicles 4,536 Kg (10,000 pounds) or less using an Electronic Stability Control (ESC) system as standard equipment by 2011. Further, in 2012, the regulation requires vehicles that have undergone aftermarket modification to remain in compliance with the performance standard. This paper describes: • a brief overview of the standard and its implications • the collaborative approach used in the first successful approach in meeting that requirement by a lift kit manufacturer o a Hardware In the Loop (HIL) test alternative for establishing a reasonable expectation for a vehicle to demonstrate compliance after modification. • Collaborative challenges overcome: o aftermarket manufacturers seeking information sharing with OEMs and Tier One suppliers: o respecting the intellectual property of OEMs and Tier One suppliers o maintaining the integrity between tool competitors and their customers in cross-collaborative efforts
Technical Paper

A Novel Approach to Implementing HIL Systems for ECU Validation and Verification for Commercial Vehicle Applications

2011-09-13
2011-01-2261
Currently, Hardware-In-the-Loop (HIL) testing is the defacto standard for ECU verification and validation at the majority of the Commercial Vehicle OEMs and Tier1 suppliers. HIL Testing is used to shorten development and testing time for both engine and machine control systems. In order to use this process, many of these companies have to develop and maintain expertise in the area of Model-based development (MBD). This paper introduces an approach which allows for the effective use of HIL systems without having to directly work in a MBD environment. Many HIL tests can be done with stimulus and response analysis of the ECUs, given core knowledge of the expected behavior of its control software and I/O subsystems. For hardware interface and diagnostics validation, this open-loop testing of the controller may suffice. It is important to provide the tester with capabilities to easily modify these stimuli and evaluate the responses.
Technical Paper

Behavior Modeling Tools in an Architecture-Driven Development Process - From Function Models to AUTOSAR

2007-04-16
2007-01-0507
This paper will first introduce and classify the basic principles of architecture-driven software development and will briefly sketch the presumed development process. This background information is then used to explain extensions which enable current behavior modeling and code generation tools to operate as software component generators. The generation of AUTOSAR software components using dSPACE's production code generator TargetLink is described as an example.
Technical Paper

Hardware-in-the-Loop Testing of Networked Electronics at Ford

2005-04-11
2005-01-1658
The number of electrical and electronic components in modern vehicles is constantly growing. Increasingly, functionalities are being distributed across several electronic control units (ECUs). While suppliers themselves are responsible for ensuring that individual ECUs function properly, only the OEM can test distributed functions. Moreover, with the volume of testing steadily growing, automated sequences are absolutely essential. To test electronic networks in the vehicle, Ford Europe is using platform-based hardware-in-the-loop simulation with integrated failure insertion. The company is setting up a uniform, project-independent procedure, from standardized test definition to automated test sequences on a virtual vehicle, right through to structured evaluation.
Technical Paper

How to Do Hardware-in-the-Loop Simulation Right

2005-04-11
2005-01-1657
Not only is the number of electronic control units (ECUs) in modern vehicles constantly increasing, the software of the ECUs is also becoming more complex. Both make testing a central task within the development of automotive electronics. Testing ECUs in real vehicles is time-consuming and costly, and comes very late in the automotive development process. It is therefore increasingly being replaced by laboratory tests using hardware-in-the-loop (HIL) simulation. While new software functions are still being developed or optimized, other functions are already undergoing certain tests, mostly on module level but also on system and integration level. To achieve the highest quality, testing must be done as early as possible within the development process. This paper describes the various test phases during the development of automotive electronics (from single function testing to network testing of all the ECUs of a vehicle).
Technical Paper

Advances in Rapid Control Prototyping - Results of a Pilot Project for Engine Control -

2005-04-11
2005-01-1350
The technological development in the field of automotive electronics is proceeding at almost break-neck speed. The functions being developed and integrated into cars are growing in complexity and volume. With the increasing number and variety of sensors and actuators, electronics have to handle a greater amount of data, and the acquisition and generation of I/O signals is also growing in complexity, for example, in engine management applications. Moreover, intelligent and complex algorithms need to be processed in a minimum of time. This all intensifies the need for Rapid Control Prototyping (RCP), a proven method of decisively speeding up the model-based software development process of automotive electronic control units (ECUs) [1],[2]. All these demanding tasks, including connecting sensors and actuators to the RCP system, need to be performed within a standard prototyping environment.
Technical Paper

Automatic Generation of Production Quality Code for ECUs

1999-03-01
1999-01-1168
This paper describes a new production code generator that meets both the requirements of code developers for efficient and reliable production code, as well as the desire of system engineers to establish a control design process based on simulation models that double as executable specifications for the ECU software. The production code generator supports automatic scaling, generates optimized fixed-point C code for microcontrollers like the Motorola 683xx, Siemens C16x, and Hitachi SH-2, and produces ASAP2 [1] calibration information. Benchmark results show that the autogenerated code can match or even exceed the efficiency of typical handwritten production code. Code quality is assured by design and by systematic, automatic, and extremely comprehensive test procedures.
Technical Paper

Using Quasi-linearization for Real Time Dynamic Simulation of a Quarter Vehicle Suspension

2007-04-16
2007-01-0833
Real time dynamic simulation of mechanisms with kinematically closed loops requires solving systems of nonlinear differential algebraic equations (DAE). Examples of such mechanisms are racing car suspensions and certain robotic arms. Simulating such systems in real time requires significant computational power. This paper explores an alternative approach in an attempt to minimize computational effort. A hybrid, two-step approach is employed of first applying symbolic math methods followed by numerical simulation. Explored is the possibility of optimizing formulae and precalculating coefficients to speed up real time simulation. Quasi-linearization is suggested as a method of solving and simulating nonlinear DAE in real time. The equations of motion are linearized in every point of the state space. The result is a system of linear ordinary differential equations with varying coefficients.
Technical Paper

Hardware-in-the-Loop Test Systems for Electric Motors in Advanced Powertrain Applications

2007-04-16
2007-01-0498
Electric drives are growing in importance in automotive applications, especially in hybrid electric vehicles (HEV) and in the vehicle dynamics area (steering systems, etc.). The challenges of real-time hardware-in-the-loop (HIL) simulation and testing of electric drives are addressed in this paper. In general, three different interface levels between the electric drive and the hardware-inthe-loop system can be distinguished: the signal level (1), the electrical level (2) and the mechanical level (3). These interface levels, as well as modeling and I/O-related aspects of electric drives and power electronics devices, are discussed in detail in the paper. Finally, different solutions based on dSPACE simulator technology are presented, for both hybrid vehicle and steering applications.
Technical Paper

Key Factors for Successful Integration of Automatic Code Generation in Series Production Development

2009-04-20
2009-01-0154
Model-based development and autocoding have become common practice in the automotive industry over the past few years. The industry is using these methods to tackle a situation in which complexity is constantly growing and development times are constantly decreasing, while the safety requirements for the software stay the same or even increase. The debate is no longer whether these methods are useful, but rather on the conditions for achieving optimum results with them. From the experiences made during the last decade this paper shows some of the key factors helping to achieve success when introducing or extending the deployment of automatic code generation in a model-based design process.
Technical Paper

Dynamic Two-Zone NOx Emission Simulation in Diesel Engine Hardware-in-the-Loop Applications

2016-09-27
2016-01-8083
Increasing diagnosis capabilities in modern engine electronic control units (ECUs), especially in the exhaust path, in terms of emission and engine aftertreatment control utilize on-board NOx prediction models. Nowadays it is an established approach at hardware-in-theloop (HIL) test benches to replicate the engine's steady-state NOx emissions on the basis of stationary engine data. However, this method might be unsuitable for internal ECU plausibility checks and ECU test conditions based on dynamic engine operations. Examples of proven methods for modeling the engine behavior in HIL system applications are so-called mean value engine models (MVEMs) and crank-angle-synchronous (in-cylinder) models. Of these two, only the in-cylinder model replicates the engine’s inner combustion process at each time step and can therefore be used for chemical-based emission simulation, because the formation of the relevant gas species is caused by the inner combustion states.
Journal Article

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-09-13
2011-01-2264
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
X