Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

Non-Intrusive Tracing at First Instruction

2015-04-14
2015-01-0176
In recent years, we see more and more ECUs integrating a huge number of application software components. This process mostly results from the increasing amount of so called in-house software in various fields like electric-drive, chassis and driver assistance systems. The software development for these systems is partially moved from the supplier to the car manufacturers. Another important trend is the introduction of new network architectures intending to meet the growing communication requirements. For such ECUs the software integration scenarios become more complicated, as more quality of service requirements with regards to timing, safety and security need to be considered [2]. Multi-core microcontrollers offer even more potential variants for integration scenarios. Understanding the interaction between the different software components, not only from a functional, but also from a timing view, is a key success factor for modern electronic systems [6,7,8,9].
X