Refine Your Search

Search Results

Viewing 1 to 8 of 8
Standard

TYPE MEASUREMENTS OF AIRCRAFT INTERIOR SOUND PRESSURE LEVELS IN CRUISE

1978-02-01
HISTORICAL
ARP1323
Recommendations of this Aerospace Recommended Practice (ARP) are not intended to satisfy the more detailed and stringent requirements of aircraft design development. Also, they may not be directly applicable to general or private aviation aircraft where special restraints on measurement locations and procedures may exist. However, many of the principles and standards discussed may apply to these aircraft. The recommended procedure for sound pressure level measurements in aircraft involves the recording of data on magnetic tape for subsequent processing and analysis after the flight. Sound level meter/octave-band analyzer measurements, because of inherent inaccuracies associated with manual data readings, are not as precise as those obtained from a tape-recorder/time integrating analyzer system and are, therefore, precluded from this recommended practice.
Standard

Type Measurements of Airplane Interior Sound Pressure Levels During Cruise

2012-08-16
CURRENT
ARP1323B
The primary measurement procedure recommended in this ARP includes the recording of sound pressure signals in the interior of an airplane during steady state cruise conditions with analysis after the flight into octave band (or one-third octave band) sound pressure levels.
Standard

TYPE MEASUREMENTS OF AIRPLANE INTERIOR SOUND PRESSURE LEVELS DURING CRUISE

1990-08-01
HISTORICAL
ARP1323A
The primary measurement procedure recommended in this ARP includes the recording of sound pressure signals in the interior of an airplane during steady state cruise conditions with analysis after the flight into octave band (or one-third octave band) sound pressure levels.
Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

2007-11-07
HISTORICAL
ARP4055
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

2020-12-21
CURRENT
ARP4055A
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
X