Refine Your Search

Search Results

Viewing 1 to 13 of 13
Standard

Gland Design: Scraper, Landing Gear, Installation

2022-10-26
CURRENT
AS4052C
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/ wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for AS568, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from PTFE, urethane, or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Gland Design: Scraper, Landing Gear, Installation

2006-08-02
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2021-02-03
HISTORICAL
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Landing Gear Servicing

2013-04-22
HISTORICAL
ARP5908
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber shock struts.
Standard

Arresting Hook Installation, Land Based Aircraft, Emergency

2007-08-09
HISTORICAL
ARP1538A
This document covers the recommended criteria and performance requirements for the design and installation of an aircraft emergency arresting hook intended for use with emergency runway arresting systems. Design criteria for fully operational hooks and for carrier based aircraft hook installations are contained in specification MIL-A-18717.
Standard

ARRESTING HOOK INSTALLATION, LAND BASED AIRCRAFT, EMERGENCY

1978-04-01
HISTORICAL
ARP1538
This document covers the recommended criteria and performance requirements for the design and installation of an aircraft emergency arresting hook intended for use with emergency runway arresting systems. Design criteria for fully operational hooks and for carrier based aircraft hook installations are contained in specification MIL-A-18717.
Standard

Gland Design: Nominal 3/8 Inch Cross Section for Compression-Type Seals

2023-06-12
CURRENT
AS4832B
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
Standard

Gland Design: Nominal 3/8 Inch Cross Section for Compression-Type Seals

2019-06-17
HISTORICAL
AS4832A
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
Standard

Gland Design: Nominal 3/8 in Cross Section for Custom Compression Type Seals

2012-06-29
HISTORICAL
AS4832
This SAE Aerospace Standard (AS) offers gland details for a 0.364 cross section gland (nominal 3/8 in) with proposed gland lengths for compression type seals with two backup rings over a range of 8 to 20 in in diameter. A dash number system is proposed similar to AS568A. A 600 series has been chosen as a logical extension of AS568A and the 625 number has been arbitrarily chosen for the initial number. (Both 300 and 400 series begin with 325 and 425 sizes.) Seal configurations and design are not a part of this document. This gland is for use with custom compression type seals including, but not limited to, O-rings, T-rings, D-rings, etc.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2015-04-27
HISTORICAL
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
X