Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Standard

Landing Gear Shock Strut Hydraulic Fluid

2016-05-06
CURRENT
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2004-01-30
HISTORICAL
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
Standard

ARRESTING HOOK INSTALLATION, LAND BASED AIRCRAFT, EMERGENCY

1978-04-01
HISTORICAL
ARP1538
This document covers the recommended criteria and performance requirements for the design and installation of an aircraft emergency arresting hook intended for use with emergency runway arresting systems. Design criteria for fully operational hooks and for carrier based aircraft hook installations are contained in specification MIL-A-18717.
Standard

Arresting Hook Installation, Land Based Aircraft, Emergency

1998-02-01
HISTORICAL
ARP1538A
This document covers the recommended criteria and performance requirements for the design and installation of an aircraft emergency arresting hook intended for use with emergency runway arresting systems. Design criteria for fully operational hooks and for carrier based aircraft hook installations are contained in specification MIL-A-18717.
Standard

Gland Design: Scraper, Landing Gear, Installation

2001-04-01
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2008-11-24
CURRENT
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Landing Gear Structures and Mechanisms

2018-06-03
CURRENT
ARP1311D
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Landing Gear Structures and Mechanisms

2009-02-04
HISTORICAL
ARP1311C
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Gland Design: Nominal 3/8 in Cross Section for Custom Compression Type Seals

1994-06-01
CURRENT
AS4832
This SAE Aerospace Standard (AS) offers gland details for a 0.364 cross section gland (nominal 3/8 in) with proposed gland lengths for compression type seals with two backup rings over a range of 8 to 20 in in diameter. A dash number system is proposed similar to AS568A. A 600 series has been chosen as a logical extension of AS568A and the 625 number has been arbitrarily chosen for the initial number. (Both 300 and 400 series begin with 325 and 425 sizes.) Seal configurations and design are not a part of this document. This gland is for use with custom compression type seals including, but not limited to, O-rings, T-rings, D-rings, etc.
Standard

Gland Design: Nominal 3/8 in Cross Section for Custom Compression Type Seals

2018-06-13
WIP
AS4832A
This SAE Aerospace Standard (AS) offers gland details for a 0.364 cross section gland (nominal 3/8 in) with proposed gland lengths for compression type seals with two backup rings over a range of 8 to 20 in diameter. A dash number system is proposed similar to AS568A. A 600 series has been chosen as a logical extension of AS568A and the 625 number has been arbitrarily chosen for the initial number. (Both 300 and 400 series begin with 325 and 425 sizes.) Seal configurations and design are not a part of this document. This gland is for use with custom compression type seals including, but not limited to, O-rings, T-rings, D-rings, etc.
X