Refine Your Search

Topic

Search Results

Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

1989-11-28
HISTORICAL
AIR4004
Recent field experience has indicated significant problems with some types of wire and cable as routed on aircraft landing gear. This Aerospace Information Report (AIR) is intended to identify environmental concerns the designer must consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications.
Standard

Plain Bearing Selection for Landing Gear Applications

2000-11-01
HISTORICAL
AIR1594A
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information is given on bearing installation methods and fits that have given satisfactory performance and service life expectancy. Corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are outlined. Effort is directed toward minimizing maintenance and maximizing life expectancy of bearing installations. Lubricated and self-lubricating bearings are discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears. For this reason, it is the responsibility of the designer to select that information which pertains to his particular application. Anti-friction bearings, defined as rolling element bearings generally used in wheel and live axle applications, will not be discussed in this document.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

CRACK INITIATION AND GROWTH CONSIDERATIONS FOR LANDING GEAR STEEL WITH EMPHASIS ON AERMET 100

1997-06-01
HISTORICAL
AIR5052
Steel alloys, such as AF1410 (AMS 6527, UNS K92571) and AerMet 100 (AMS 6532), have been developed which have improved Fracture Toughness characteristics compared to the current landing gear steel alloy, 300M (AMS 6419 and AMS 6257, MIL-S-8844, UNS K44220). The 300M steel is the most widely used material in current landing gear designs. It has been successfully used in thousands of applications. The use of the 300M material necessitates a safe life design criterion where components are retired after one-fourth to one-sixth the laboratory test life. This criterion was established in part due to the relatively low fracture toughness of low-alloy steel in the 260 to 300 ksi strength range. The high fracture tough alloys give comparable strength levels with an increase in fracture toughness and better resistance to stress corrosion cracking. These alloys may make possible the consideration of new procedures for operation, maintenance, and inspection.
Standard

Crack Initiation and Growth Considerations for Landing Gear Steel With Emphasis on Aermet 100

2004-12-27
CURRENT
AIR5052A
Steel alloys, such as AF1410 (AMS 6527, UNS K92571) and AerMet 100 (AMS 6532), have been developed which have improved Fracture Toughness characteristics compared to the current landing gear steel alloy, 300M (AMS 6419 and AMS 6257, MIL-S-8844, UNS K44220). The 300M steel is the most widely used material in current landing gear designs. It has been successfully used in thousands of applications. The use of the 300M material necessitates a safe life design criterion where components are retired after on-fourth to one-sixth the laboratory test life. This criterion was established in part due to the relative low fracture toughness of low-alloy steel in the 260 to 300 ksi strength range. The high fracture tough alloys give comparable strength levels with an increase in fracture toughness and better resistance to stress corrosion cracking. These alloys may make possible the consideration of new procedures for operation, maintenance, and inspection.
Standard

Plain Bearing Selection for Landing Gear Applications

2010-07-15
HISTORICAL
AIR1594C
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Plain Bearing Selection for Landing Gear Applications

2007-03-05
HISTORICAL
AIR1594B
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Plain Bearing Selection for Landing Gear Applications

2018-04-18
CURRENT
AIR1594D
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

DESIGN, DEVELOPMENT AND TEST CRITERIA - SOLID STATE PROXIMITY SWITCHES/SYSTEMS FOR LANDING GEAR APPLICATIONS

1986-07-09
HISTORICAL
AIR1810A
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Historical Design Information of Aircraft Landing Gear and Control Actuation Systems

2017-07-10
CURRENT
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2012-10-03
CURRENT
AIR5541A
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Development and Qualification of Composite Landing Gears

2010-10-07
CURRENT
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2006-04-20
HISTORICAL
AIR5541
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Landing Gear Common Repair

2004-12-01
CURRENT
AIR5885
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace Overhaul/Component Maintenance or Technical Order Manuals, but it can serve as a guide into their preparation. This document may also be used as a template to develop an MRB (Material Review Board) plan. The recommendations in this document apply to components made of metallic alloys. These recommendations are intended for new manufactured components as well as for overhauled components. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary. It must be understood that all the repairs listed in this document are not to be applied without the involvement of the cognizant engineer.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2004-01-30
HISTORICAL
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
Standard

Landing Gear Component Heat Damage

2018-07-02
CURRENT
AIR5913A
The purpose of this report is to outline types of in-service heat damage that have been observed in high strength steel landing gear components, with an emphasis on a particular type that is referred to as “Ladder Cracking” which can develop in landing gear shock struts. The report discusses how ladder cracking can be detected visually and evaluated by non-destructive inspection methods, and how it can be repaired at overhaul with the prior approval of the Original Equipment Manufacturer. This report also describes the use of a bearing material that has resolved this problem without introducing other problems. Examples of other types of service induced heat damage are also discussed.
Standard

Landing Gear Structural Requirements as Listed in the MIL-886X Series of Specifications

2012-10-03
CURRENT
AS8860A
This specification contains landing gear strength and rigidity requirements, which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes. These requirements include, but are not limited to the following: a General Specifications 1 The shock-absorption characteristics and strength of landing-gear units and the strength and rigidity of their control systems and of their carry-through structures.
X