Refine Your Search

Topic

Search Results

Standard

ELASTOMER COMPATIBILITY CONSIDERATIONS RELATIVE TO O-RING AND SEALANT SELECTION

1972-04-18
HISTORICAL
AIR786A
This document contains data relative to the chemical nature of aerospace fluids and relates each to its effect upon elastomeric components. Since the compatibilities of elastomers are determined by the compounding as well as the nature of the base polymer, the elastomers considered are limited to finished compounds for which material or performance specifications could be referenced.
Standard

Elastomer Compatibility Considerations Relative to Elastomeric Sealant Selection

2014-11-06
CURRENT
AIR786B
This document contains data relative to the chemical nature of aerospace fluids and relates each to its empirical effect upon elastomeric components. Since the compatibilities of elastomers are determined by the compounding as well as the nature of the base polymer, the elastomers considered are limited to finished compounds for which material or performance specifications can be referenced.
Standard

Selection of Metallic Spring Energized Seals for Aerospace

2010-12-02
CURRENT
AIR6079
The purpose of this report is to provide design, application and maintenance engineers with basic information on the use of metallic Spring Energized sealing devices when used as piston (OD) and rod (ID) seals in aircraft fluid power components such as actuators, valves, and swivel glands. The Spring Energized seal is defined and the basic types in current use are described. Guidelines for selecting the type of Spring Energized seal for a given design requirement are covered in terms of friction, leakage, service life, installation characteristics, and interchangeability. Spring Energized seals can also be made in various forms and types, including face seals (internal and external pressure sealing types), and rotary variants too. These further types will not be discussed in this document, but many of the same principles apply for them as well.
Standard

Metallic Seal Rings for High Temperature Reciprocating Hydraulic Service

2011-12-19
CURRENT
AIR1077A
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

METALLIC SEAL RINGS FOR HIGH TEMPERATURE RECIPROCATING HYDRAULIC SERVICE

1969-11-01
HISTORICAL
AIR1077
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

Sealing Techniques for Missile Applications

2001-01-01
HISTORICAL
ARP1833A
The purpose of this standard is to provide the missile hydraulic and pneumatic component designer with information learned, tested and substantiated in correction of problems and failures experienced with seals that are subject to the unique requirements of missile static storage and subsequent dynamic operational conditions. Missile hydraulic and pneumatic component designers have been handicapped by the absence of concise design criteria for two difficult sealing conditions usually existing in missile applications as follows: Static pressure condition - Low pressure for long periods in a cyclic temperature environment (i.e., long term storage requirements). Dynamic pressure condition - High pressures suddenly applied in an extreme temperature environment (i.e., operational firing requirement).
X