Refine Your Search

Search Results

Technical Paper

Modelling of soot formation in diesel engines exploiting measurements of soot volume fraction and diameter

2001-09-23
2001-24-0011
Quantitative measurements of the soot volume fraction and diameter performed by spectroscopic techniques within the combustion chamber of a diesel engine are employed to aid multidimensional simulation of the soot formation and oxidation processes. By changing the start of fuel injection, two different operating conditions are considered, which are characterized by different relative importance of the premixed to the diffusive stage of the combustion process. Both the reduced models by Hiroyasu et al., and the one by Nagle and Strikland- Constable are employed within the numerical simulation. The reason of the peculiar over-prediction of soot concentration of the latter model is discussed and related to the need of furnishing coherent values of the soot particle density and mean diameter.
Technical Paper

Characterization of CR diesel exhaust by UV-visible extinction and scattering spectroscopy

2001-09-23
2001-24-0070
Non-intrusive diagnostic techniques based on broadband (190-550 nm) extinction and scattering spectroscopy were applied at undiluted exhaust Common- Rail (CR) diesel engine in real time. The influence of load and Exhaust Gas Recirculation (EGR) on soot mass concentration, size distribution of emitted particles and NO concentration was analyzed. NO concentration was evaluated by ""in-situ"" ultraviolet-visible absorption measurements and compared with those obtained by conventional analyzer. The extinction and scattering spectra were compared with those evaluated by the Lorenz-Mie model for spherical particles in order to retrieve the size, the number concentration of the emitted particles and particulate mass. The optical measurements showed that new generation diesel engines, in spite of a drastic reduction of the exhaust mass concentration, caused the emission in the atmosphere of high number concentration of carbonaceous nanoparticles.
Technical Paper

An Integrated Simulation Model for the Prediction of S.I. Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2001-09-23
2001-24-0045
The calculation of the main pollutant emissions discharged into the atmosphere by means of numerical codes requires the development of integrated models, including either an accurate thermodynamic in-cylinder analysis and the simulation of reacting unsteady flows in the duct system. This paper describes the main features of the numerical model GASDYN developed by the authors, which in the last years has been enhanced in order to achieve this kind of objectives. A multi-zone approach has been adopted to predict the combustion process in s.i. engines, whereas the so called super-extended Zeldovich mechanism has been introduced to perform a more detailed description of all the chemical reactions involved in the NOx production process. The simulation of the reacting flows in the exhaust manifold has been completed by the introduction of further enhancements to predict the chemical behavior of gases inside the catalytic converters.
Technical Paper

Modeling the Pollutant Emissions from a S.I. Engine

2002-03-04
2002-01-0006
Nowadays 1D fluid dynamic models are widely used by engine designers, since they can give sufficiently accurate predictions in short times, allowing to support the optimization and development work of any prototype. According to the last requirements in terms of pollutant emission control, some enhancements have been introduced in the 1D code GASDYN, to improve its ability in predicting the composition of the exhaust gas discharged by the cylinders and the transport of the chemical species along the exhaust system. The main aspects of the methods adopted to model the combustion process and the related formation of pollutants are described in the paper. To account for the burnt gas stratification, two different approaches have been proposed, depending on the expected turbulence levels inside the combustion chamber. The reliability of the simulation of the pollutant formation process has been enhanced by the integration of the thermodynamic module with the Chemkin code.
Technical Paper

The Prediction of 1D Unsteady Flows in the Exhaust System of a S.I. Engine Including Chemical Reactions in the Gas and Solid Phase

2002-03-04
2002-01-0003
The paper describes the research work concerning the simulation of 1D unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN has been developed to enable the concurrent prediction of the wave motion in the intake and exhaust ducts, the chemical composition of the gas discharged by the cylinder of a s.i. engine, the chemical and thermal behavior of catalytic converters. The effect of considering the transport of chemical species with reactions in gas phase (post-oxidation of unburned HC in the exhaust manifold) and in solid phase (conversion of pollutants in the catalyst) on the predicted wave motion is reported.
Technical Paper

A Multizone approach to the detailed kinetic modeling of HCCI combustion

2007-09-16
2007-24-0086
A 1-D thermo-fluid dynamic simulation code, including a quasi-D combustion model coupled with a detailed kinetic scheme, is used to analyze the combustion process in HCCI engines. The chemical mechanism has previously been validated in comparison with experimental data over a wide range of operating conditions. To explore the impact on model predictions, the cylinder was divided into multiple zones to characterize the conditions of the in-cylinder charge. Particular attention is devoted to the numerical algorithm in order to ensure the robustness and efficiency of the large system solution. This numerical model allows study of the autoignition of the air fuel mixture and determines the chemical evolution of the system. The proposed model was compared with in-cylinder temperature and chemical species profiles. The experimental activity was carried out in the combustion chamber of a single cylinder air cooled engine operating in HCCI mode.
Technical Paper

Flame Diagnostics in the Combustion Chamber of Boosted PFI SI Engine

2007-09-16
2007-24-0003
The growing demands on fuel economy and always stricter limitations on pollutant emissions has increased the interest in the ignition phenomena to guarantee successful flame development for all the spark ignition (SI) engine operating conditions. The initial size and the growth of the flame have a strong influence on the further development of the combustion process. In particular, for the new FIAT generation of turbocharged SI engines, the first times of spark ignition combustion are not yet fully understood. This is mainly due to the missing knowledge concerning the detailed physical and chemical processes taking place during the all set of the flame propagation. These processes often occur simultaneously, making difficult the interpretation of measurements. In the present paper, flame dynamic was followed by UV-visible emission imaging in an optical SI engine.
Technical Paper

Absolute NO and OH Concentrations During Diesel Combustion Process by Multiwavelength Absorption Spectroscopy

2002-03-04
2002-01-0892
Conventional methods to measure gas concentrations and, in particular, NO are typically based on sampling by valve, sample treatment and subsequent analysis. These methods suffer low spatial and temporal resolution. The introduction of high energy lasers in combination with fast detection systems allowed to detect the NO distribution inside optically accessible Diesel engines. In this paper, a high spatial and temporal resolution in-situ technique based on ultraviolet - visible absorption spectroscopy is proposed. The characterization of the combustion process by the detection of gaseous compounds from the start of combustion until the exhaust phase was performed. In particular, this technique allows the simultaneous detection of NO and OH absolute concentrations inside an optically accessible Diesel combustion chamber.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Prediction of S.I. Engine Emissions During an ECE Driving Cycle via Integrated Thermo-Fluid Dynamic Simulation

2004-03-08
2004-01-1001
The paper describes the research work carried out on the thermo-fluid dynamic modeling of an S.I. engine coupled to the vehicle in order to predict the engine and tailpipe emissions during the ECE European driving cycle. The numerical code GASDYN has been extended to simulate the engine + vehicle operation during the first 90 seconds of the NEDC driving cycle, taking account of the engine and exhaust system warm-up after the cold start. The chemical composition of the engine exhaust gas is calculated by means of a thermodynamic multi-zone combustion model, augmented by kinetic emission sub-models for the prediction of pollutant emissions. A simple procedure has been implemented to model the vehicle dynamic behavior (one degree of freedom model). A closed-loop control strategy (proportional-derivative) has been introduced to determine the throttle opening angle, corresponding to the engine operating point when the vehicle is following the ECE cycle.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

Optical Characterization of the Combustion Process in a 4- Stroke Engine for 2-Wheel Vehicle.

2009-09-13
2009-24-0055
The match among the increasing performance demands and the stringent requirements of emissions and the fuel consumption reduction needs a strong evolution in the two-wheel vehicle technology. In particular, many steps forward should be taken for the optimization of modern small motorcycles and scooters at low engine speeds and high loads. To this aim, detailed understanding of thermo-fluid dynamic phenomena that occur in the combustion chamber is fundamental. In this work, low-cost solutions are proposed to optimize ported fuel injection spark ignition (PFI SI) engines for two-wheel vehicles. The solutions are based on the change of phasing and on the splitting of the fuel injection in the intake manifold. The experimental activities were carried out in the combustion chamber of a single-cylinder 4-stroke optical engine fuelled with European commercial gasoline. The engine was equipped with a four-valve head of a commercial scooter engine.
Technical Paper

Fuel Composition Effects on Air-Fuel Mixing and Self-Ignition in a Divided Chamber Diesel System by Optical Diagnostics

1999-03-01
1999-01-0510
The influence of fuel composition on mixture formation and first stage of combustion, occurring in a small high swirl combustion chamber of an IDI Diesel engine, was analyzed from measurements of spectral extinction and flame emissivity. Measurements were carried out in an optically accessible combustion chamber in which an air swirling flow is forced from the main chamber through a tangential passage. A conventional injection system was used to inject Tetradecane, N-heptane and Diesel fuel. The distribution of liquid and vapor and the interaction of the jet with air swirl were detected by UV-visible extinction measurements. The autoignition phase was characterized by UV-visible chemiluminescence measurements. For all fuels examined, it was observed that initially the liquid fuel penetrates almost linearly with time until reaching a maximum characteristic length, slightly dependent on the fuel.
Technical Paper

Fluid Dynamic Modeling of the Gas Flow with Chemical Specie Transport through the Exhaust Manifold of a Four Cylinder SI Engine

1999-03-01
1999-01-0557
The paper describes the 1-D fluid dynamic modeling of unsteady flows with chemical specie tracking in the ducts of a four-cylinder s.i. automotive engine, to predict the composition of the exhaust gas reaching the catalyst inlet. A comprehensive simulation model, based on classical and innovative numerical techniques for the solution of the governing equations, has been developed. The non-traditional shock-capturing CE-SE (Conservation Element-Solution Element) method has been extended to deal with the propagation of chemical species. A comparison of the MacCormack method plus FCT or TVD algorithms with the CE-SE method has pointed out the superiority of the latter scheme in the propagation of contact discontinuities. A realistic composition of the exhaust products in the cylinder, evaluated by a two-zone combustion model including emission sub-models, has been imposed at the opening of the exhaust valve, considering the effect of short-circuit of air during valve overlap.
Technical Paper

Spectroscopic Investigation of Initial Combustion Stages in a SI Engine Fuelled with Ethanol and Gasoline

2017-11-05
2017-32-0092
It is well known that ethanol can be used in spark-ignition (SI) engines as a pure fuel or blended with gasoline. High enthalpy of vaporization of alcohols can affect air-fuel mixture formation prior to ignition and may form thicker liquid films around the intake valves, on the cylinder wall and piston crown. These liquid films can result in mixture non-homogeneities inside the combustion chamber and hence strongly influence the cyclic variability of early combustion stages. Starting from these considerations, the paper reports an experimental study of the initial phases of the combustion process in a single cylinder SI engine fueled with commercial gasoline and anhydrous ethanol, as well as their blend (50%vol alcohol). The engine was optically accessible and equipped with the cylinder head of a commercial power unit for two-wheel applications, with the same geometrical specifications (bore, stroke, compression ratio).
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Journal Article

Spectroscopic Investigations and High Resolution Visualization of the Combustion Phenomena in a Boosted PFI SI Engine

2009-06-15
2009-01-1814
High spatial and temporal resolution optical techniques were applied in a spark ignition (SI) engine in order to investigate the thermal and fluid dynamic phenomena occurring during the combustion process. The experiments were realized in the combustion chamber of an optically accessible single-cylinder port-fuel injection (PFI) SI engine. The engine was equipped with a four-valve head and with an external boost device. Two fuel injection strategies at closed-valve and open-valve occurring at wide open throttle were tested. Cycle-resolved digital imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to the firing of fuel deposition near the intake valves and on the piston surface were investigated. Natural emission spectroscopy in a wide wavelength range from ultraviolet to infrared was applied to detect the radical species that marked the combustion phenomena in the selected operating conditions.
Technical Paper

An Integrated Simulation Model for the Prediction of GDI Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2004-03-08
2004-01-0043
The paper describes the development and validation of a quasi-dimensional multi-zone combustion model for Gasoline Direct Injection engines. The model has been embedded in the 1D thermo-fluid-dynamic code for the simulation of the whole engine system named GASDYN and developed by the authors [1, 2 and 3]. The GDI engine combustion model solves mass, energy and species equations using a 4th order Runge-Kutta integration method; the fuel spray is initially divided into a number of zones fixed regardless of the injected amount and the time step, considering the following break-up, droplet evaporation and air entrainment in each single zone. Experimental correlations have been used for the spray penetration and spatial information. Once the ignition begins it is assumed that the flame propagates spherically, evaluating its velocity by means of a fractal combustion approach and considering the local air-fuel ratio, which is the result of the spray evolution within the combustion chamber.
X