Refine Your Search

Topic

Search Results

Standard

Spacecraft Life Support Systems

2011-06-20
HISTORICAL
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
Standard

Installation, Heaters, Airplane, Internal Combustion Heater Exchange Type

2001-04-01
CURRENT
ARP266A
To provide a recommended practice covering the recommended safety and performance practices found desirable in service in the installation of combustion heaters, as specified in Society of Automotive Engineers Aeronautical Standard AS143 and certain auxiliary devices which are considered necessary to the safety and performance of the heaters as used in certain aircraft.
Standard

AIRPLANE CABIN PRESSURIZATION

1948-11-01
HISTORICAL
ARP367
These recommendations cover the general field of airplane cabin supercharging equipment and are subdivided as follows:
Standard

AIRPLANE CABIN PRESSURIZATION

1959-11-15
HISTORICAL
ARP367A
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

AIRPLANE CABIN PRESSURIZATION

1960-03-01
HISTORICAL
ARP367B
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-08-23
CURRENT
ARP89D
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC AIRPLANE CABIN

1943-01-01
HISTORICAL
ARP89
These specifications are written to cover automatic temperature controls under three classifications, namely: A AUTOMATIC TEMPERATURE CONTROLS - GENERAL - Dealing with features applicable to all types and uses. B AUTOMATIC TEMPERATURE CONTROLS - MILITARY AND COMMERCIAL - Covering features applicable to military aircraft and commercial aircraft. C DESIRABLE DESIGN FEATURES - General information for use of those concerned in meeting the requirements contained herein.
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1990-02-28
HISTORICAL
ARP986B
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

Guide for Qualification Testing of Aircraft Air Valves

2008-11-06
HISTORICAL
ARP986C
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

AIR CONDITIONING, HELICOPTER, GENERAL REQUIREMENTS FOR

1970-10-26
HISTORICAL
ARP292B
These recommendations are written to cover the general requirements of helicopter air conditioning and are sub-divided as follows: (1) Air Conditioning System - Dealing with the general design aspects. (2) Air Conditioning Equipment - Design requirements for satisfactory system function and performance. (3) Air Conditioning System Design Requirements -General information for use of those concerned in meeting requirements contained herein.
Standard

Environmental Control Systems for Rotorcraft

2020-05-12
CURRENT
ARP292D
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered.
Standard

Environmental Control Systems for Helicopters

2014-12-05
HISTORICAL
ARP292C
This ARP discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for helicopter environmental control systems (ECS). The helicopter ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military helicopters where an ECS is specified; however, certain requirements peculiar to military applications, such as nuclear, biological and chemical (NBC) protection, are not covered.
Standard

Environmental Control for Civil Supersonic Transport

2011-08-10
CURRENT
AIR746C
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
X