Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

2007-12-04
HISTORICAL
ARP1953A
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

1992-08-01
HISTORICAL
ARP1953
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2020-10-01
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

Aircraft Flexible Tanks General Design and Installation Recommendations

2019-05-07
CURRENT
AIR1664A
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2.
Standard

AIRCRAFT FLEXIBLE TANKS GENERAL DESIGN AND INSTALLATION RECOMMENDATIONS

1994-09-01
HISTORICAL
AIR1664
This Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of non-self-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in section 3.
Standard

Aircraft Flame Arrestor Installation Guidelines and Test Methods

2021-08-26
CURRENT
ARP5776
The scope of this document is to provide pertinent information on demonstrating the performance of Flame Arrestors, also known as Fuel Vent Protectors (FVPs), in preventing the propagation of a deflagration when the arrestors are subjected to aerospace-representative flames produced by the venting of flammable gas through the arrestor. Test procedures for two separate combustion-loading profiles are presented herein: The flame hold test condition, and the flame propagation test condition. For the flame hold test condition, the applicability of two separate critical flows is discussed in which one flow results in the greatest flame arrestor temperature and a second flow results in the greatest temperature of the surrounding structure.
Standard

Aerospace Fuel System Specifications and Standards

2007-12-04
HISTORICAL
AIR1408A
This report lists documents that aid and govern the design of gas turbine powered aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. The specifications and standards section has been divided into two parts, a master list arranged numerically of all industry and military specifications and standards and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications MIL-F-8615, MIL-F-17874, MIL-F-38363 and MIL-F-87154. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
Standard

Aerospace Fuel System Specifications and Standards

2019-05-24
CURRENT
AIR1408B
This report lists documents that aid and govern the design of aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. Note that only the principle fuel specifications for the U.S. and Europe (Military Specifications, ASTM, and Def Stan) have been included within this report. The specifications and standards section has been divided into two parts: a master list arranged numerically of all industry and military specifications and standards, and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications ARP8615, MIL-F-17874, and JSSG 2009. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
Standard

AEROSPACE FUEL SYSTEM SPECIFICATIONS AND STANDARDS

1976-03-01
HISTORICAL
AIR1408
This report lists military and industry specifications and standards which are commonly used in aerospace gas turbine fuel systems. It is intended as a supplement to specifications MIL-F-3863, MIL-F-17874 and MIL-F-8615. Revisions and amendments which are current for these specifications and standards are not listed.
Standard

GLOSSARY OF TERMS - AIRCRAFT GROUND REFUELING

2007-12-04
HISTORICAL
AIR4783
This SAE Aerospace Information Report (AIR) presents a glossary of terns commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled.
Standard

Aircraft Fuel System Design Guidelines

2019-12-05
CURRENT
AIR7975
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub-systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft.
Standard

Electrical Bonding of Aircraft Fuel Systems

2022-10-04
CURRENT
AIR5128A
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems (FQIS)

2022-10-07
CURRENT
AIR5691B
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2017-05-18
HISTORICAL
AIR5691A
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

Guidance for the Design and Installation of Fuel Quantity Indicating Systems

2013-01-04
HISTORICAL
AIR5691
This document is applicable to commercial and military aircraft fuel quantity indication systems. It is intended to give guidance for system design and installation. It describes key areas to be considered in the design of a modern fuel system, and builds upon experiences gained in the industry in the last 10 years.
Standard

Aircraft Fuel System and Component Icing Test

2012-06-06
CURRENT
ARP1401B
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine (and APU) is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine/APU manufacturer for commercial and specific military applications. This ARP is written mostly to address fuel system level testing. It also provides a means to address the requirements of 14 CFR 23.951(c) and 25.951(c). Some of the methods described in this document can be applied to engine and APU level testing or components of those application domains.
X