Refine Your Search

Topic

Search Results

Standard

Statement on Requirements for Real-Time Communication Protocols (RTCP)

2016-10-21
CURRENT
AIR4886A
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
Standard

Pi-Bus Handbook

1996-01-01
HISTORICAL
AIR4903
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
Standard

Pi-Bus Handbook

2012-05-03
CURRENT
AIR4903A
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
Standard

Statement on Requirements for Real-Time Communication Protocols (RTCP)

1996-04-01
HISTORICAL
AIR4886
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
Standard

POWER CONTROLLERS: SIGNAL INTERFACE APPLICATIONS AND CONSIDERATIONS

1991-09-03
HISTORICAL
AIR4272
This AIR is applicable to SSPCs, EMPCs, and hybrid power controllers. It covers the control, status, BIT, etc., interfaces, other than electrical power. For the purpose of this document, a power controller shall have, as a minimum, the following characteristics: a Power switching function b Control input c Overload protection d Status feedback To accomplish the goals set forth in the Foreword, the interfaces are first categorized by function. Next, examples of actual implementations are given.
Standard

Handbook of System Data Communications

2016-10-21
CURRENT
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

Handbook of System Data Communications

1989-11-01
HISTORICAL
AIR4271
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

High Performance 1553 Research and Development

2016-10-21
CURRENT
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

High Performance 1553 Research and Development

2007-02-21
HISTORICAL
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

Guidelines for Ethernet Physical Layer on Military and Aerospace Vehicle Applications

2017-08-01
WIP
ARP7208
This ARP establishes guidelines for the use of IEEE-802.3 as a data bus network in military and aerospace vehicles. It encompasses the data cable and its connections for a system utilizing 10Base-T, 100Base-T, 1000BASE-T and 10GBASE-T over copper medium dependent interfaces (MDI). This document contains extensions/restrictions to “off-the-shelf” IEEE-802.3 standards, and assumes that the reader already has a working knowledge of IEEE-802.3.
Standard

Converged Aerospace Integrated Network (CAIN)

2015-04-14
WIP
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
Standard

Verification Methods for AS5653 Network Controller, Network Terminal, and Switch Physical Layer

2018-08-13
CURRENT
AS6260
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
Standard

Verification Methods for AS5653 Network Controller

2017-10-11
CURRENT
AS6089
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Controller (NC) complies with the NC requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all of the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
Standard

Broadband 1553

2018-05-22
WIP
AS8774
This standard defines a broadband time division command/response multiplex data bus that co-exists and permits concurrent operation with a MIL-STD-1553 Data Bus and MIL-STD-1760 Appendix C. This standard allows utilization of legacy MIL-STD-1553 wiring and bus coupling.
Standard

Type E-1 Electrical Media Interface Characteristics

2016-10-21
CURRENT
AS4074/3B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

HIGH SPEED RING BUS (HSRB) STANDARD

1988-08-29
HISTORICAL
AS4075
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

Type E-1 Electrical Media Interface Characteristics

2004-10-14
HISTORICAL
AS4074/3A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
X