Refine Your Search

Topic

Search Results

Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1987-11-19
HISTORICAL
ARP750B
In addition to those aspects of a passenger seat as comfort and appearance, the passenger seat, whether aft, forward or side facing, is the basic link that supports and ties the occupant to the aircraft structure. It is essential that the support and tie down functions be accomplished in a manner that will provide maximum safety during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or water, and that these functions are not compromised to attain the comfort and appearance features.
Standard

Photometric Data Acquisition Procedures for Impact Test

2003-05-21
HISTORICAL
ARP5482
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Photometric Data Acquisition Procedures for Impact Test

2011-11-28
CURRENT
ARP5482A
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2001-10-01
HISTORICAL
ARP5497
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

Safety Lap Belts (For Civil Transport Aircraft)

2000-08-01
CURRENT
ARP682C
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Safety Lap Belts (For Civil Transport Aircraft)

1967-08-01
HISTORICAL
ARP682A
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Safety Lap Belts (For Civil Transport Aircraft) (Noncurrent May 91)

1991-05-01
HISTORICAL
ARP682B
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2012-10-03
HISTORICAL
ARP5765
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations 14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample report.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2015-12-04
CURRENT
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
Standard

Component Standard for Airbag Systems Installed in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2004-01-20
WIP
AS5785
This Aerospace Standard specifies the minimum component performance requirements and test procedures for airbag systems in civil rotorcraft, transport aircraft and general aviation aircraft. It is intended to establish a minimum level of performance that can be called upon by the system designer. Only core component technical requirements are addressed in this document. Installation specific issues, those that cannot be evaluated using a generic seat or interior are not included in this document. Installation performance specific requirements, which are dependent on specific seat or interior dimensions, are addressed in the SAE AS6466 document, titled "Installation Performance Standard for Airbag Systems Installed in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft ". Compliance with this standard alone does not assure adequate performance of the airbag system under normal and emergency conditions.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2017-06-28
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2011-06-20
HISTORICAL
AIR6448
This document provides an industry recommended framework for establishing a multi-party agreement to support approval of electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) integrated in aircraft seats and provide a framework that allows seat manufacturers to build and ship completed, integrated, and approved seat assemblies with electronics included. The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2019-08-07
CURRENT
AIR6448A
The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat. The defined responsibilities, areas of authority and accountability of each party, as well as necessary communication protocols, must ensure configuration management, design control and quality control. These definitions, controls and protocols are agreed (thru normal commerical agreements and binding contracts) and adhered to by all parties ensuring all parts in the supply chain remain approved (e.g. certified and conformed).
Standard

Method to Evaluate Aircraft Passenger Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2017-02-02
CURRENT
ARP6199A
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required. Independent furniture related to seat installations is outside the scope of this document.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Section 7.b

2017-10-16
WIP
ARP6448A
This document provides an industry-recommended framework for establishing agreements to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) meet the seat TSO Minimum Performance Standard. These agreements will allow Seat Suppliers to build and ship completed, integrated and approved seat assemblies under TSOA with electronics included. The document presents the roles, responsibilities and accontibilities of the Electronics Manufacturer, the Seat Supplier, and the Seat Installer/Electronics Activator in the context of AC 21-49 Section 7.b ‘ Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document applies to all FAA seat TSOs (C39(), C127()…etc).
X