Refine Your Search

Topic

Search Results

Standard

Passenger Seat Design, Commercial Transport Aircraft

1965-04-20
HISTORICAL
ARP750
The purpose of this Aerospace Recommended Practice (ARP) is to provide design criteria that will lead to seat designs which provide maximum safety for air transportation passengers. It is not the purpose of this ARP to specify design methods or specific designs to be followed in the accomplishment of the stated objectives.
Standard

Passenger Seat Design, Commercial Transport Aircraft

1999-05-01
CURRENT
ARP750C
The purpose of this aerospace recommended practice (ARP) is to provide design criteria that will lead to seat designs which provide maximum safety for air transportation passengers. It is not the purpose of the ARP to specify design methods or specific designs to be followed in the accomplishment of the stated objectives.
Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1974-01-01
HISTORICAL
ARP750A
In addition to those aspects of a passenger seat such as comfort and appearance, the passenger seat, whether aft, forward, or side-facing, is the basic link that supports and ties the air transport passenger to the aircraft structure. It is essential that the support and tiedown functions be accomplished in a manner that will provide maximum safety and security during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or sea and that these functions not be compromised to attain the comfort and appearance features.
Standard

Definition of serious injury due to sharp edge formation inflicted on an occupant (passenger) following an emergency landing.

2017-10-02
WIP
ARP6963
Define an objective criteria for serious injury inflicted on an occupant (passenger) following an emergency landing (CFR 25.561/25.562). The document herein is limited to evaluation of the CFR 25.785 (b) & (d), which encompasses the potential sharp edge formation caused by the test dummy’s head striking the seat and/or other structures (shroud, monitor, handset, glass from monitor, etc).
Standard

Photometric Data Acquisition Procedures for Impact Test

2003-05-21
HISTORICAL
ARP5482
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Photometric Data Acquisition Procedures for Impact Test

2011-11-28
CURRENT
ARP5482A
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2018-02-06
CURRENT
ARP5497A
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2001-10-01
HISTORICAL
ARP5497
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

Composite Seats

2014-11-18
WIP
ARP6337
Define and develop test parameters, test methods, measurements, and acceptable performance criteria for composite aircraft seat structures.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2012-10-03
HISTORICAL
ARP5765
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations 14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample report.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2015-12-04
CURRENT
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2017-01-12
WIP
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
Standard

Performance Standard for Seat Surrounding Furniture in Transport Aircraft

2017-09-19
WIP
AS6960
Seat surrounding furniture (commonly known as shells) is intended to enhance passenger comfort and privacy. They can offer additional space for reclining the seat into a bed position, additional stowage, amenities, etc. Often some amenities are located on the furniture including the front row monument installed in front of the passenger seat. The units normally attach to the same aircraft floor tracks directly in front or behind passenger seat(s) or to the seat primary structure. The unit structures are not directly integrated into the main fuselage and do not offer main supports for aircraft integrity. This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for Seat Surrounding Furniture to be certified for installation in transport category airplanes.
Standard

Safety Considerations - Flight Deck Seats for Transport Aircraft

1999-03-01
CURRENT
ARP1150A
The pilot's seat is the basic link that supports and ties the pilot to the aircraft structure. It is essential that this function be accomplished in a manner that will provide the maximum safety and security during all normal and emergency flight conditions. The recommendations listed in Section 3 shall apply to all regularly assigned flight crew member's seats located on the flight deck
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2017-06-28
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2011-06-20
HISTORICAL
AIR6448
This document provides an industry recommended framework for establishing a multi-party agreement to support approval of electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) integrated in aircraft seats and provide a framework that allows seat manufacturers to build and ship completed, integrated, and approved seat assemblies with electronics included. The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat.
X