Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

Photometric Data Acquisition Procedures for Impact Test

2003-05-21
HISTORICAL
ARP5482
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Photometric Data Acquisition Procedures for Impact Test

2011-11-28
CURRENT
ARP5482A
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2001-10-01
HISTORICAL
ARP5497
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2012-10-03
HISTORICAL
ARP5765
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations 14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample report.
Standard

Analytical Methods for Aircraft Seat Design and Evaluation

2015-12-04
CURRENT
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2017-06-28
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-12-13
CURRENT
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2011-06-20
HISTORICAL
AIR6448
This document provides an industry recommended framework for establishing a multi-party agreement to support approval of electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) integrated in aircraft seats and provide a framework that allows seat manufacturers to build and ship completed, integrated, and approved seat assemblies with electronics included. The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Option 7b

2019-08-07
CURRENT
AIR6448A
The primary purpose of this document is to provide roles, responsibilities and accountabilities to meet AC 21-49 Section 7.b ‘Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document may be applied to all applicable seat TSOs (C39(), C127()…etc). The approval for the integration of the electronics will fall, in part or in full, under the type design authority of the Seat Installer rather than the Seat Supplier shipping the integrated seat. The defined responsibilities, areas of authority and accountability of each party, as well as necessary communication protocols, must ensure configuration management, design control and quality control. These definitions, controls and protocols are agreed (thru normal commerical agreements and binding contracts) and adhered to by all parties ensuring all parts in the supply chain remain approved (e.g. certified and conformed).
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Section 7.b

2012-06-11
CURRENT
ARP6448
This document provides an industry-recommended framework for establishing agreements to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) meet the seat TSO Minimum Performance Standard. These agreements will allow Seat Suppliers to build and ship completed, integrated and approved seat assemblies under TSOA with electronics included. The document presents the roles, responsibilities and accontibilities of the Electronics Manufacturer, the Seat Supplier, and the Seat Installer/Electronics Activator in the context of AC 21-49 Section 7.b ‘ Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document applies to all FAA seat TSOs (C39(), C127()…etc).
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2016-05-13
HISTORICAL
ARP6316
This SAE Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18 and no greater than 30 degrees relative to the aircraft longitudinal axis. Later revisions are intended to provide criteria for other facing directions. Performance criteria for side facing seats installed with the occupant facing direction at 90 degrees relative to the aircraft longitudinal axis are provided in AS8049/1. Seats installed at angles greater than 30 degrees relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness. However, this document does not provide the criteria for oblique facing seats incorporating such rests.
Standard

Restraint Systems for Civil Aircraft

2019-04-30
WIP
AS8043C
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Restraint Systems for Civil Aircraft

2008-09-12
CURRENT
AS8043B
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
CURRENT
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Aircraft Seat Design Guidance and Clarifications

2011-05-24
HISTORICAL
ARP5526C
This Aerospace Recommended Practice (ARP) documents a common understanding of terms, compliance issues and design criteria to facilitate certification of seat installations specific to Part 25 aircraft. This ARP provides general guidance for seats to be installed in Part 23 aircraft and Parts 27 and 29 rotorcraft and does not specify specific designs or design methods for such certification.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2000-11-01
CURRENT
AS5276/1
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
X