Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comprehensive Hazard Analysis Technique for Safety-Critical Automotive Systems

2001-03-05
2001-01-0674
Hazard analysis plays an important role in the development of safety-critical systems. Hazard analysis techniques have been used in the development of conventional automotive systems. However, as future automotive systems become more sophisticated in functionality, design, and applied technology, the need for a more comprehensive hazard analysis approach has arisen. In this paper, we describe a comprehensive hazard analysis approach for system safety programs. This comprehensive approach involves applying a number of hazard analysis techniques and then integrating their results. This comprehensive approach attempts to overcome the narrower scope of individual techniques while obtaining the benefits of all of them.
Technical Paper

Survey of Software Failsafe Techniques for Safety-Critical Automotive Applications

2005-04-11
2005-01-0779
A requirement of many modern safety-critical automotive applications is to provide failsafe operation. Several analysis methods are available to help confirm that automotive safety-critical systems are designed properly and operate as intended to prevent potential hazards from occurring in the event of system failures. One element of safety-critical system design is to help verify that the software and microcontroller are operating correctly. The task of incorporating failsafe capability within an embedded microcontroller design may be achieved via hardware or software techniques. This paper surveys software failsafe techniques that are available for application within a microcontroller design suitable for use with safety-critical automotive systems. Safety analysis techniques are discussed in terms of how to identify adequate failsafe coverage.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
X