Refine Your Search

Search Results

Technical Paper

Investigation of Combustion Process in a Small Optically Accessible Two Stroke SI Engine

2013-09-08
2013-24-0131
The improvement in engines efficiency and reduction of emissions is the permanent aim of engine industry in order to meet European standards regulation. To optimize small internal combustion engines it is necessary to improve the basic knowledge of thermo-fluid dynamic phenomena occurring during the combustion. This paper describes the combustion process in an optically accessible two-stroke spark-ignition engine used in a commercial 43 cm3 chainsaw. Two different feeding systems were tested: standard and CWI one. The engine head was modified in order to allow the visualization of the combustion using endoscopic system coupled with a high spatial resolution ICCD camera. Flame front propagation was evaluated through an image processing procedure. The image visualization and chemiluminence allowed to follow the combustion process from the spark ignition to the exhaust phase at high engine speed. All the optical data were correlated with engine parameters and exhaust emissions.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Technical Paper

Design for an Optically Accessible Multicylinder High Performance GDI Engine

2011-09-11
2011-24-0046
In this paper, the modifications realized to make optically accessible a commercial high performance spark ignition and direct injection (DI) 4-cylinder engine are reported. The engine has been designed trying to keep as much as possible its thermo-fluid dynamic configuration in order to maintain its performance and emissions. Two optical accesses have been realized in order to interfere as little as possible with the combustion chamber geometry. A first optical access has been achieved in the piston head and a second by inserting an endoscopic fiber probe in the head. Preliminary results demonstrated that this optical assessment responds to the design targets and allowed a characterization of a commercial GDI engine working with homogeneous and stratified charge mode.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2011-09-11
2011-24-0031
The paper investigates the idle operating condition of a current production turbocharged Gasoline Direct Injected (GDI) high performance engine both from an experimental and a numerical perspective. Due to the low engine speed, to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. According to the low heat flux due to combustion, temperature levels are low and reduced fuel evaporation is expected. Consequently, fuel spray evolution within the combustion chamber and spray/wall interaction are key points for the understanding of the combustion process. In order to properly investigate and understand the many complex phenomena, a wide set of engine speeds was experimentally investigated and, as far as the understanding of the physics of spray/wall interaction is concerned, many different injection strategies are tested.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

2013-04-08
2013-01-0249
The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

2015-09-06
2015-24-2413
Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

2015-09-06
2015-24-2432
Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Journal Article

Capturing Cyclic Variability in SI Engine with Group Independent Component Analysis

2015-09-06
2015-24-2415
Data decomposition techniques have become a standard approach for the analysis of 2D imaging data originating from optically accessible internal combustion engines. In particular, the method of Proper Orthogonal Decomposition (POD) has proven to be a valuable tool for the evaluation of cycle-to-cycle variability based on luminous combustion imaging and particle image velocimetry (PIV) measurements. POD basically permits to characterize the dominant structures of the process under consideration. Recently, an alternative procedure based on Independent Component Analysis (ICA) has been introduced in the engine field. Unlike POD, the method of ICA identifies the patterns corresponding to physical processes that are statistically independent. In this work, a Group-ICA approach is applied to 2D cycle-resolved images of the luminosity emitted by the combustion process. The analysis is meant to characterize cyclic variability of a port fuel injection spark ignition (PFI SI) engine.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2012-04-16
2012-01-1144
The increased limitations to both NOx and soot emissions have pushed engine researchers to rediscover gasoline engines. Among the many technologies and strategies, gasoline direct injection plays a key-role for improving fuel economy and engine performance. The paper aims to investigate an extremely complex task such as the idle operating engine condition when the engine runs at very low engine speeds and low engine loads and during the warm-up. Due to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. Taking into account the warm-up engine condition, the analyses are performed with a temperature of the coolant of 50°C. The paper reports part of a combined numerical and experimental synergic activity aiming at the understanding of the physics of spray/wall interaction within the combustion chamber and particular care is used for air/fuel mixing and the combustion process analyses.
Technical Paper

Experimental and Numerical Characterization of Diesel Injection in Single-Cylinder Research Engine with Rate Shaping Strategy

2017-09-04
2017-24-0113
The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
Technical Paper

Comparison of Spray Characteristics Measured in an Optical Single Cylinder Diesel Engine with 1D Model

2014-04-01
2014-01-1424
In recent years, several studies on the efficiency of modern diesel engines have focused on the modeling of combustion process in its different phases. Here, analytical equations are used to describe the physical phenomena that occur in the cylinder. The good agreement between the experimental and simulated data could improve the predictive capabilities of the computational code and reduce the cost of experimental activities. For the modeling of a diesel spray, the first step has been to investigate its behavior in a non-combusting environment; in particular, Musculus and Kattke proposed a model for the simulation of the injection of fuel in non-reacting still environment. Starting from that knowledge, the authors apply the injection model to a compression ignition research engine. By means of an optical engine, injection phase has been investigated via 2D digital imaging. The main jet characteristics like penetration and dispersion angle have been measured.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Technical Paper

Quasi-Dimensional Simulation of Downsizing and Inverter Application for Efficient Part Load Operation of Spark Ignition Engine Driven Micro-Cogeneration Systems

2018-10-30
2018-32-0061
Within the context of distributed power generation, small size systems driven by spark ignition engines represent a valid and user-friendly choice, that ensures good fuel flexibility. One issue is that such applications are run at part load for extensive periods, thus lowering fuel economy. Employing an inverter (fitted between the generator and load) allows engine operation within a wide range of crankshaft rotational velocity, therefore improving efficiency. For the purpose of evaluating the benefits of this technology within a co-generation framework, two configurations were modeled by using the GT-Power simulation software. After model calibration based on measurements on a small size engine for two-wheel applications, the downsized version was compared to a larger power unit operated at constant engine speed for a scenario that featured up to 10 kW rated power.
X