Refine Your Search

Topic

Author

Search Results

Technical Paper

Towards On-Line Prediction of the In-Cylinder Pressure in Diesel Engines from Engine Vibration Using Artificial Neural Networks

2013-09-08
2013-24-0137
This study aims at building efficient and robust artificial neural networks (ANN) able to reconstruct the in-cylinder pressure of Diesel engines and to identify engine conditions starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. In this view, the artificial neural network is meant to be efficient in terms of response time, i.e. fast enough for on-line use. In addition, robustness is sought in order to provide flexibility in terms of operation parameters. Here we consider a feed-forward neural network based on radial basis functions (RBF) for signal reconstruction, and a feed-forward multi-layer perceptron network with tan-sigmoid transfer function for signal classification. The networks are trained using measurements from a three-cylinder real engine for various operating conditions.
Technical Paper

Investigation of Combustion Process in a Small Optically Accessible Two Stroke SI Engine

2013-09-08
2013-24-0131
The improvement in engines efficiency and reduction of emissions is the permanent aim of engine industry in order to meet European standards regulation. To optimize small internal combustion engines it is necessary to improve the basic knowledge of thermo-fluid dynamic phenomena occurring during the combustion. This paper describes the combustion process in an optically accessible two-stroke spark-ignition engine used in a commercial 43 cm3 chainsaw. Two different feeding systems were tested: standard and CWI one. The engine head was modified in order to allow the visualization of the combustion using endoscopic system coupled with a high spatial resolution ICCD camera. Flame front propagation was evaluated through an image processing procedure. The image visualization and chemiluminence allowed to follow the combustion process from the spark ignition to the exhaust phase at high engine speed. All the optical data were correlated with engine parameters and exhaust emissions.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Influence of the Injection Pressure on the Combustion Performance and Emissions of Small GDI Engine Fuelled with Bio-Ethanol

2011-06-09
2011-37-0007
Non-intrusive measurements were carried out in an optical spark ignition GDI engine in order to characterize the chemical and physical processes involved using gasoline and bio-ethanol fuel. In particular, an optical 4 strokes small single cylinder engine for two wheel vehicles was used. It was equipped with an elongated piston with a wide sapphire window in the head and quartz cylinder. Exhaust emissions and engine performances were evaluated during the imaging and spectral measurements in order to investigate the spray characteristics and flame propagation with high spatial and temporal resolution. Several engine conditions based on homogeneous charge mixture conditions were investigated considering the effect of injection pressure and ethanol fuel too. The simultaneous use of the high injection pressure and bio-ethanol showed to be a valid answer to reduction of pollutants without worsening the performances.
Technical Paper

Particle Size Distributions from a DI High Performance SI Engine Fuelled with Gasoline-Ethanol Blended Fuels

2011-09-11
2011-24-0211
This paper reports the results of an experimental investigation on the combustion characteristics and exhaust particulate emissions of a GDI high performance engine, fuelled with blends of bio-ethanol and European gasoline fuel. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at fixed speed and load, namely 1500 rpm and 110 Nm, and fuelled with gasoline (E0), ethanol (E100) and two blends 50% v/v (E50) and 85% v/v (E85) of ethanol in gasoline. Two fuel injection strategies were investigated: homogeneous charge and stratified charge combustion mode. The study mainly focuses on the effects of fuel injection strategy and ethanol upon the emissions of particulate matter (PM), in terms of mass, number concentration and size distribution.
Technical Paper

Reconstruction of In-Cylinder Pressure in a Diesel Engine from Vibration Signal Using a RBF Neural Network Model

2011-09-11
2011-24-0161
This study aims at building an efficient and robust radial basis function (RBF) artificial neural network (ANN), to reconstruct the in-cylinder pressure of a diesel engine starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. The RBF network is trained using measurements from different engine operating conditions. Training data are composed of time series from the accelerometer and corresponding measured in-cylinder pressure signals. The RBF network is then validated using data not included in training and the results show good correspondence between measured and reconstructed pressure signal. Various network parameters are used to optimize the network quality.
Technical Paper

Diagnosis and Control of Advanced Diesel Combustions using Engine Vibration Signal

2011-04-12
2011-01-1414
Increasing demands on emissions reduction and efficiency encouraged a progressive introduction of cleaner combustion concepts. "Advanced" diesel combustions offer a high potential for simultaneous reduction of both NOx and soot within the engine through high inlet charge dilution and mixture homogenization. However, the potential benefits of these combustions in terms of emissions are counterbalanced by their high sensitivity to in-cylinder thermodynamic conditions. This sensitivity makes the engines require closed loop combustion control with real-time information about combustion quality. The parameter widely considered as the most important for the evaluation of the combustion quality in internal combustion engines is the cylinder pressure. However, this kind of measure involves an intrusive approach to the cylinder, expensive sensors and a special mounting process.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Technical Paper

Design for an Optically Accessible Multicylinder High Performance GDI Engine

2011-09-11
2011-24-0046
In this paper, the modifications realized to make optically accessible a commercial high performance spark ignition and direct injection (DI) 4-cylinder engine are reported. The engine has been designed trying to keep as much as possible its thermo-fluid dynamic configuration in order to maintain its performance and emissions. Two optical accesses have been realized in order to interfere as little as possible with the combustion chamber geometry. A first optical access has been achieved in the piston head and a second by inserting an endoscopic fiber probe in the head. Preliminary results demonstrated that this optical assessment responds to the design targets and allowed a characterization of a commercial GDI engine working with homogeneous and stratified charge mode.
Technical Paper

IR Imaging of Premixed Combustion in a Transparent Euro5 Diesel Engine

2011-09-11
2011-24-0043
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2011-09-11
2011-24-0031
The paper investigates the idle operating condition of a current production turbocharged Gasoline Direct Injected (GDI) high performance engine both from an experimental and a numerical perspective. Due to the low engine speed, to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. According to the low heat flux due to combustion, temperature levels are low and reduced fuel evaporation is expected. Consequently, fuel spray evolution within the combustion chamber and spray/wall interaction are key points for the understanding of the combustion process. In order to properly investigate and understand the many complex phenomena, a wide set of engine speeds was experimentally investigated and, as far as the understanding of the physics of spray/wall interaction is concerned, many different injection strategies are tested.
Technical Paper

Study on Spray Injection and Combustion of Fouled and Cleaned Injectors by Means of 2-D Digital Imaging in a Transparent CR Diesel Engine

2013-09-08
2013-24-0062
The aim of this study is to investigate how the fouling that injectors undergo after several operating hours on a vehicle can affect the injection and combustion phases. The impact of the injector fouling on the pollutant formation has been also investigated. Moreover, the effects of the injector cleaning by deposits through the top quality diesel fuel commercialized by eni that is FAME free and contains multi performance additives have been investigated. The experimentation has been carried out on transparent compression ignition engine. It is a single cylinder equipped with a Euro 5 multi-cylinder head and a second-generation common rail injection system. Three indirect-acting piezoelectric injectors have been tested. The first one has been fouled with European commercial diesel fuel through the CEC DW10 injector-coking test. The second one has been fouled in the same way and, then, it has been cleaned with eni top quality diesel fuel. This fuel has fed the third injector too.
Technical Paper

Coking Effect of Different FN Nozzles on Injection and Combustion in an Optically Accessible Diesel Engine

2013-09-08
2013-24-0039
Interest on the issue of diesel injector nozzle deposits is rising in the last years due to its effects on engine performance. The alteration of nozzles geometry can cause a difference in fuel mass flow and influence smoke emission. Investigation on the effects of nozzle coking in a diesel injector has been the topic of this paper. The experiments have been carried out in a single cylinder optical engine operating in premixed mode. The head of a Euro 5 production engine has been mounted on an elongated cylinder and the production CR injection system has been used. A sapphire window has been set in the piston head in order to have visible access to phenomena occurring in the combustion chamber. Three injectors with decreasing flow number (FN) have been tested. Engine has been fed with commercial diesel fuel. High spatial and temporal resolution camera has been used for the acquisition of in-cylinder injection and combustion images.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

Dynamic Analysis of Emission Spectra in HCCI Combustion

2013-09-08
2013-24-0042
This work reports on the application of spectroscopic measurements coupled with data processing techniques in order to study, in terms of spectral emissions, the dynamic of the HCCI (Homogeneous charge compression ignition) combustion that occurs inside the combustion chamber of an optically accessible direct injection Diesel engine. A pre-processing of the recorded spectra is required for a correct analysis. The procedure of pre-processing consists of two main steps, that is: noise filtering with a technique based on the POD (Proper Orthogonal Decomposition); estimate and subtraction of the baseline. The analysis of the dynamics of the recorded spectra was carried out by the estimates of the synchronous and asynchronous 2D correlation spectra.
Technical Paper

Independent Component Analysis of Combustion Images in Optically Accessible Gasoline and Diesel Engines

2013-09-08
2013-24-0045
Flame luminosity fields can nowadays be collected from optically accessible engines, with high spatial and temporal resolution, and constitute a very powerful investigation means for the transient combustion phenomena taking place in the engine chamber. Interpretation of the impressive amount of collected data can be quite challenging, mainly due to the variety of coupled phenomena involved. Application of Independent Component Analysis (ICA) aims here at separating spatial structures related to different combustion events, and is coupled with the analysis of the statistics of the coefficients of the independent components, and of the measured in-cylinder parameters. This paper reports on the comparison of the application of ICA to 2D images of combustion-related luminosity collected from two different optically accessible engines: Diesel and spark ignition.
Technical Paper

In-Cylinder Soot Formation and Exhaust Particle Emissions in a Small Displacement Spark Ignition Engine Operating with Ethanol Mixed and Dual Fueled with Gasoline

2017-03-28
2017-01-0653
This paper aims to correlate the in-cylinder soot formation and the exhaust particle emissions for different methods of gasoline/ethanol fueling in spark ignition engine. In particular, the engine was fueled with gasoline and ethanol separately and not, in this latter case both blended (E30) and dual fueled (EDF). For E30 the bend was direct injected and for EDF, the ethanol was injected in the combustion chamber and the gasoline into the intake duct. For both the injection configurations, the same percentage of ethanol in gasoline was supplied: 30%v/v. The measurements were carried out at 2000 and 4000 rpm, under full load, and stoichiometric condition, in small single cylinder optical engine. 2D-digital imaging was performed to follow the combustion process with a high spatial and temporal resolution through a full-bore optical piston. The two-color pyrometry was applied for the analysis of the in cylinder soot formation in the combustion chamber.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
X