Refine Your Search


Search Results

Technical Paper

Investigation of Combustion Process in a Small Optically Accessible Two Stroke SI Engine

The improvement in engines efficiency and reduction of emissions is the permanent aim of engine industry in order to meet European standards regulation. To optimize small internal combustion engines it is necessary to improve the basic knowledge of thermo-fluid dynamic phenomena occurring during the combustion. This paper describes the combustion process in an optically accessible two-stroke spark-ignition engine used in a commercial 43 cm3 chainsaw. Two different feeding systems were tested: standard and CWI one. The engine head was modified in order to allow the visualization of the combustion using endoscopic system coupled with a high spatial resolution ICCD camera. Flame front propagation was evaluated through an image processing procedure. The image visualization and chemiluminence allowed to follow the combustion process from the spark ignition to the exhaust phase at high engine speed. All the optical data were correlated with engine parameters and exhaust emissions.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

Influence of the Injection Pressure on the Combustion Performance and Emissions of Small GDI Engine Fuelled with Bio-Ethanol

Non-intrusive measurements were carried out in an optical spark ignition GDI engine in order to characterize the chemical and physical processes involved using gasoline and bio-ethanol fuel. In particular, an optical 4 strokes small single cylinder engine for two wheel vehicles was used. It was equipped with an elongated piston with a wide sapphire window in the head and quartz cylinder. Exhaust emissions and engine performances were evaluated during the imaging and spectral measurements in order to investigate the spray characteristics and flame propagation with high spatial and temporal resolution. Several engine conditions based on homogeneous charge mixture conditions were investigated considering the effect of injection pressure and ethanol fuel too. The simultaneous use of the high injection pressure and bio-ethanol showed to be a valid answer to reduction of pollutants without worsening the performances.
Technical Paper

Particle Size Distributions from a DI High Performance SI Engine Fuelled with Gasoline-Ethanol Blended Fuels

This paper reports the results of an experimental investigation on the combustion characteristics and exhaust particulate emissions of a GDI high performance engine, fuelled with blends of bio-ethanol and European gasoline fuel. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at fixed speed and load, namely 1500 rpm and 110 Nm, and fuelled with gasoline (E0), ethanol (E100) and two blends 50% v/v (E50) and 85% v/v (E85) of ethanol in gasoline. Two fuel injection strategies were investigated: homogeneous charge and stratified charge combustion mode. The study mainly focuses on the effects of fuel injection strategy and ethanol upon the emissions of particulate matter (PM), in terms of mass, number concentration and size distribution.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

In-Cylinder Soot Formation and Exhaust Particle Emissions in a Small Displacement Spark Ignition Engine Operating with Ethanol Mixed and Dual Fueled with Gasoline

This paper aims to correlate the in-cylinder soot formation and the exhaust particle emissions for different methods of gasoline/ethanol fueling in spark ignition engine. In particular, the engine was fueled with gasoline and ethanol separately and not, in this latter case both blended (E30) and dual fueled (EDF). For E30 the bend was direct injected and for EDF, the ethanol was injected in the combustion chamber and the gasoline into the intake duct. For both the injection configurations, the same percentage of ethanol in gasoline was supplied: 30%v/v. The measurements were carried out at 2000 and 4000 rpm, under full load, and stoichiometric condition, in small single cylinder optical engine. 2D-digital imaging was performed to follow the combustion process with a high spatial and temporal resolution through a full-bore optical piston. The two-color pyrometry was applied for the analysis of the in cylinder soot formation in the combustion chamber.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
Technical Paper

Experimental Analysis of O2 Addition on Engine Performance and Exhaust Emissions from a Small Displacement SI Engine

In this paper, the effect of the oxygen addition on engine performance and exhaust emissions was investigated. The experimental study was carried out in a small single-cylinder PFI SI four-stroke engine. The addition of the 5% vol and 10% vol of oxygen was performed in the intake duct. Typical urban driving operating conditions were investigated. The engine emissions were characterized by means of gaseous analyzers and a smokemeter. Particle size distribution function was measured in the size range from 5.6 to 560 nm by means of an Engine Exhaust Particle Sizer (EEPS). An improvement in terms of engine power output, without BSFC penalty, and HC emissions with oxygen addition was observed at all the investigated operating conditions. On the other hand, NOx and PM emissions increase.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Journal Article

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. In particular, split injection allows a reduction of knock intensity by inducing different AFR gradient and turbulent energy distribution. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Technical Paper

Experimental Characterization of an Ethanol DI - Gasoline PFI and Gasoline DI - Gasoline PFI Dual Fuel Small Displacement SI Engine

The aim of the paper is the comparison of the performance, gaseous and particle emissions from different injection configurations and fuels. The engine was operated in port fuel injection (PFI), direct injection (DI) and dual fuel (DF). For DF, ethanol DI-gasoline PFI and gasoline DI-gasoline PFI strategies were performed to discern the effect of injection strategy from the effect of the fuel. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000 rpm, 4000 rpm and 5000 rpm full load. The investigated engine operating conditions are representative of the homologation urban driving cycle. The gaseous and particle emissions were measured at the exhaust by means of a gas analyzer and a smoke meter.
Technical Paper

Two Dimensional Analysis of Diesel Combustion by Spectral Flame Emissivity Measurements

Spectral flame emissivity and absorption measurements with high temporal and spatial resolution were performed in an optically accessible high-swirl divided-chamber Diesel system. Simultaneous determination of soot temperature, soot volume fraction and the OH radical concentration were made from the start to the end of the combustion in 153 locations equally distributed in the chamber. The engine was run at 2000 rpm and at fixed air-fuel ratio realizing 200 consecutive combustion cycles. To visualize the spatial and temporal spray and flame evolution, direct high-speed photographic sequences were taken at 8000 frames/s. The photographic sequences showed that the spray is strongly distorted and mixed by very high swirl resulting in a well premixed region where the combustion starts. The OH radicals were detected in the fuel reaction zone. Moreover OH concentration and soot volume fraction are well correlated with soot temperature.
Journal Article

Spray Formation and Combustion Analysis in an Optical Single Cylinder Engine Operating with Fresh and Aged Biodiesel

The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized RME at two levels of blending on spray formation and combustion in modern automotive diesel engines. The tests were performed on an optical single-cylinder engine sharing combustion system configuration with the 2.0L Euro5 GM diesel engine for passenger car application. Two blends (B50 and B100) blending were tested for both fresh and aged RME and compared with commercial diesel fuel in two different operating points typical of NEDC (1500rpm/2bar BMEP and 2000rpm/5bar BMEP). The experimental activity was devoted to an in-depth investigation of the spray density, breakup and penetration, mixture formation, combustion and soot formation, by means of optical techniques.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Technical Paper

Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation

Gasoline direct injection (GDI) allows flexible operation of spark ignition engines for reduced fuel consumption and low pollutants emissions. The choice of the best combination of the different parameters that affect the energy conversion process and the environmental impact of a given engine may either resort to experimental characterizations or to computational fluid dynamics (CFD). Under this perspective, present work is aimed at discussing the assessment of a CFD-optimization (CFD-O) procedure for the highest performance of a GDI engine operated lean under both single and double injection strategies realized during compression. An experimental characterization of a 4-stroke 4-cylinder optically accessible engine, working stratified lean under single injection, is first carried out to collect a set of data necessary for the validation of a properly developed 3D engine model.
Technical Paper

Split Injection in a GDI Engine Under Knock Conditions: An Experimental and Numerical Investigation

Present work investigates both experimentally and numerically the benefits deriving from the use of split injections in increasing the engine power output and reducing the tendency to knock of a gasoline direct injection (GDI) engine. The here considered system is characterized by an optical access to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window placed in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones of the mixture, where undesired self-ignition may occur under some circumstances. Optical data are correlated to in-cylinder pressure oscillations on a cycle resolved basis.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.