Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Journal Article

Impact of RME and GTL Fuel on Combustion and Emissions of a “Torque-Controlled” Diesel Automotive Engines

2010-05-05
2010-01-1477
The present paper describes some results of a research project aimed at studying the impact of alternative fuels blends on the emissions and fuel consumption of an Euro 5 automotive diesel engine. Two alternative fuels were chosen for the experiments: RME and GTL. The tests were done in the three most important operating conditions for the engine emission calibration. Moreover, the NOx-PM trade-off by means of EGR sweep was performed in the same operating conditions, in order to evaluate the engine EGR tolerability when burning low sooting fuels as the RME. The investigations put in evidence that the impact of the alternative fuels on modern diesel engines remains significant. This also depends on the interaction between the alternative fuel characteristics and the engine-management strategies, as described in detail in the paper.
Technical Paper

Model Development of a CNG Active Pre-chamber Fuel Injection System

2021-09-05
2021-24-0090
Natural gas as an internal combustion engine fuel is taking a predominant role as a mid-term solution to pollution due to combustion driven human activities both in the energy and transport sectors. Engine researchers and manufacturers are in the process of investigating and improving strategies that decrease emissions and fuel consumption, without compromising engine performance and efficiency; active pre-chamber configurations are to be accounted for as one of these. A relatively small amount of fuel (up to 10 % of the total fuel-energy requirement) is introduced in the confined volume of the pre-chamber and forms a close-to-stoichiometric mixture with fresh charge that is introduced from the main combustion chamber during the compression stroke. After spark-ignition the products of this early stage of combustion can ignite ultra-lean mixtures (with λ up to 2) through the Turbulent Jet Ignition mechanism, hence reducing fuel consumption as well as noxious emissions such as NOx.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Methane Conversion and Ammonia Formation Model over a Pd-Rh Three-Way Catalyst for CNG Heavy-Duty Engines

2021-09-05
2021-24-0002
Research activities in the development of reliable computational models for aftertreatment systems are constantly increasing in the automotive field. These investigations are essential in order to get a complete understanding of the main catalytic processes which clearly have a great impact on tailpipe emissions. In this work, a 1D chemical reaction model to simulate the catalytic activity of a Pd/Rh Three-Way Catalyst (TWC) for a Natural Gas heavy-duty engine is presented. An extensive database of tests carried out with the use of a Synthetic Gas Bench (SGB) has been collected to investigate the methane abatement pathways, linked to the lambda variation and oxide formation on palladium surface. Specific steady-state tests have shown a dynamics of the methane conversion even at fixed λ and temperature conditions, essentially due to the Pd/PdO ratio.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
Journal Article

Study of the Effect of the Engine Parameters Calibration to Optimize the Use of Bio-Ethanol/RME/Diesel Blend in a Euro5 Light Duty Diesel Engine

2013-04-08
2013-01-1695
In the global scenario of encouraging the use of renewable sources, the bioethanol as fuel supply in the automotive sector is receiving increasing interest. In the present paper the results of a research activity aimed to study the impact of a bioethanol/biodiesel/mineral diesel blend on performance and emissions of an automotive diesel engine are reassumed. An experimental campaign has been devoted to characterize the engine fuelled by the ethanol based blend highlighting the advantages and issues related to the bioethanol use. Moreover, the effects of the most important injection settings on the engine performance have been detailed, applying a Design of Experiment (DoE) method, to identify the potentiality offered by a proper engine calibration to optimize the ethanol blend use.
Technical Paper

Experimental Analysis of the Operating Parameter Influence on the application of Low Temperature Combustion in the Modern Diesel Engines

2007-07-23
2007-01-1839
The present paper describes the effects of some operating parameters on the performance of a single cylinder research engine when it runs under Low Temperature Combustion (LTC) conditions. Aim of the experimental work was to explore the potential of the control of each parameter on the improvement of LTC application to the modern LD diesel engines for passenger cars. In particular, the effects on LTC performance of the following operating parameters in different engine test points were analyzed: intake air temperature, exhaust EGR cooler temperature, intake pipe pressure, exhaust pipe pressure and swirl ratio. Some parameters have shown a particular influence on the improvement of EGR tolerability for maximum NOx reduction preserving fuel consumption and smoke, while others have evidenced poor sensitivity.
Technical Paper

Compression Ratio Influence on the Performance of an Advanced Single-Cylinder Diesel Engine Operating in Conventional and Low Temperature Combustion Mode

2008-06-23
2008-01-1678
The present paper describes a detailed experimental analysis on the effect of the compression ratio on the performance of a single-cylinder research diesel engine operating with both conventional combustion and Low Temperature Combustion mode for low NOx emissions. The single-cylinder engine was developed with the same combustion system architecture of the four-cylinder FIAT 1.9 liter Multi-Jet. Starting from an engine configuration with a compression ratio of 16.5, the compression ratio was reduced to 14.5. For both the geometric configurations, engine performance was evaluated in terms of thermodynamic parameters, emissions and fuel consumption in some operating test points representative of the engine behavior running on the NEDC cycle.
Technical Paper

How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles?

2017-09-04
2017-24-0144
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Assessment of the Effect of Low Cetane Number Fuels on a Light Duty CI Engine: Preliminary Experimental Characterization in PCCI Operating Condition

2011-09-11
2011-24-0053
The goal of this paper is to acquire insight into the influence of cetane number (CN) and fuel oxygen on overall engine performance in the Premixed Charge Compression Ignition (PCCI) combustion mode. From literature, it is known that low reactive (i.e., low CN) fuels increase the ignition delay (ID) and therefore the degree of mixing prior to auto-ignition. With respect to fuel oxygen, it is known that this has a favorable impact on soot emissions by means of carbon sequestration. This makes the use of low CN oxygen fuels an interesting route to improve the applicability of PCCI combustion in diesel engines. In earlier studies, performed on a heavy-duty engine, cyclic oxygenates were found to consistently outperform their straight and branched counterparts with respect to curbing soot. This was attributed to a considerably lower CN.
Technical Paper

Application of a Dual Fuel Diesel-CNG Configuration in a Euro 5 Automotive Diesel Engine

2017-03-28
2017-01-0769
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction of carbon dioxide and is intrinsically clean, being much less prone to soot formation. In this respect, the Dual Fuel concept has already proven to be a viable solution, industrially implemented for several applications in the heavy duty engines category. An experimental research activity was devoted to the analysis of the potentiality offered by the application of a Dual Fuel Diesel-CNG configuration on a light duty 2L Euro 5 automotive diesel engine, equipped with an advanced control system of the combustion. The experimental campaign foresaw to test the engine in dynamic and steady state conditions, comparing engine performance and emissions in conventional Diesel and Dual Fuel combustion modes.
Technical Paper

Experimental and Numerical Analysis of Nozzle Flow Number Impact on Full Load Performance of an Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0679
The present paper describes an experimental and numerical study on the effect of the nozzle flow number (FN) on the full load performance of a modern Euro5 diesel automotive engine, in terms of torque, efficiency and exhaust emissions. The improvement of the diesel engine performance requires a continuous development of the engine components, first of all the injection system and in particular the nozzle design. One of the most crucial factors affecting performance and emissions is the nozzle flow number and its influence becomes more and more important as high performance and low emissions are continuous requirements. Indeed, reducing the nozzle flow number, due to an increase of spray-air mixing, an improvement in PM-NOx trade-off is generally expectable. On the other hand, at full load, where peak firing pressure and exhaust valve temperature become the limiting factors, critical operating conditions can be easily reached reducing the nozzle hole diameter.
X